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Abstract

We construct probabilistic projections of baseline carbon dioxide and other greenhouse gas emissions for South
Africa to 2050. Our approach uses a mixed methodology. We obtain probabilistic projections of 11 key drivers of
energy demand, using past literature, expert elicitation, and further modelling. These are randomly sampled and
passed to an energy-economic model implementing TIMES for South Africa. Probabilistic projections of emissions are
obtained as an output of this Monte Carlo simulation. Total emissions are expected to rise, slowly to 2030 and then
more rapidly, but to fall per unit of GDP. Enormous uncertainties exist: 95% confidence intervals for total emissions
are 450-475Mt COz equivalent in 2020; 450-640Mt in 2035; and 465-1100Mt in 2050. Median projections are 465,
520, and 675Mt CO2z equivalent per year in 2020, 2035, and 2050 respectively. Perhaps the key uncertainty in the
setting of baseline GHG emissions in South Africa is the relative price of coal to gas, a result of the large share of
emissions produced by electricity generation.

1. Introduction

Debates about the potential effects of climate change, the necessity for action, and the relative
merits of different response strategies often refer to what is expected to occur if we “do
nothing” - meaning, loosely speaking, under policies not too different from those currently in
place (Azar, Lindgren & Andersson, 2013; O’Neill, Riahi & Keppo, 2010; Smith et al., 2000;
Wright & Fulton, 2006). Domestic climate change policy, as well as national positions in global
climate negotiations, for example, must strike a balance between reducing greenhouse gas
(GHG) emissions and maintaining economic growth, particularly in developing countries.
Mitigation costs, to take another example, are often calculated as the difference in monetary
cost between a baseline situation and a new one characterized by lower emissions (Hourcade &
Robinson, 1996).

The definition of an appropriate baseline trajectory is problematic (Clapp & Prag, 2012). Many
factors influencing greenhouse gas emissions - population, for example - are subject to
considerable external or aleatory uncertainty, and can only be predicted probabilistically.
Deciding which policies and commitments to include in the baseline is also difficult, given the
time-scales over which policies are implemented and historical differences between
commitments and actions. For developing countries poverty, inequality, and education goals
can not be traded-off against mitigation goals. The extent to which development goals should
play a role in the baseline is contested.



The goal of the project is to derive baseline forecasts of carbon dioxide and other GHG emissions
for South Africa, from the present day to 2050. We use a mixed methodology that is innovative
in some of its elements. We compute uncertainty around forecasted GHG emissions indirectly,
by first obtaining forecasts of a number of key drivers of energy demand - population growth,
economic growth, technology characterization and various commodity prices. These forecasts
are obtained using a combination of expert elicitation (Anadon, Nemet & Verdolini, 2013),
literature review and secondary sources (Raftery et al., 2012), and further modelling (Nemet,
2006; Masini & Franckl, 2013). All inputs require some further processing in order to take a
number of independent sources - potentially measured over different timescales and with
different frequencies - and obtain a single suitably fine-scaled forecast (generally an annual
time series for each key driver). All forecasts are probabilistic in nature - that is, they include
assessments of statistical uncertainty around the modal or most-likely trajectory.

The forecasts obtained from this process are used as inputs to a South African implementation
of TIMES (the SATIM model), an energy-economic-environment model that selects a mix of
energy sources and technologies that meets the forecasted demand for useful energy at least
cost. GHG emissions, as well as other relevant outcomes, are obtained as a result of the
optimisation model. Monte Carlo simulation is used to generate many possible trajectories from
the probabilistic projections of each key driver of GHG emissions. These are assembled into
input matrices, each of which combines a single set of projections for each of the key drivers.
Finally, the SATIM model operates deterministically on each of these input matrices, turning
each one into an annual forecast of GHG emissions and other relevant outcomes. By examining
the set of all simulated GHG emission trajectories, we arrive at a probabilistic forecast of GHG
emissions for South Africa to 2050.

The remainder of the paper elaborates on the approach summarized above, and reports the
results obtained. Sections 2 and 3 describe our methodology and define the baseline scenario.
Sections 4 and 5 report results obtained from the assessment of input variables and subsequent
forecasts of GHG emissions respectively. Section 6 provides a discussion of the results and
concludes the paper.

2. Methodology

2.1. Assessing uncertainty on key drivers of GHG emissions

We base our approach on the South African TIMES model (SATIM), a partial equilibrium linear
optimisation model that selects a mix of energy sources and technologies to meet a given
demand for useful energy at least cost. GHG emissions are obtained as output of the
optimisation model. In doing so, we abstract the task of assessing uncertainty about GHG
emissions into the “easier” tasks of assessing uncertainty about (a) energy demand and (b)
which fuels/technologies are used to meet this demand.

Uncertainty about energy demand is in turn decomposed into uncertainty about various
determining factors, specifically population growth, economic growth, and differing growth



rates across economic sectors. Uncertainty about the fuel mix used to meet energy demand is
decomposed into uncertainty about the prices of the various fuel sources (e.g. coal and gas) and
the costs of energy technologies (e.g. renewables in the form of PV and CSP).

We assess uncertainty on each of the key input variables considered using a combination of (a)
areview of the literature, (b) elicitation from national experts, (c) further modelling. The
methodology used to obtain forecasts depends on the nature of the key driver. For international
commodity prices and for technologies in which South Africa can be expected to pay global
prices (i.e. nuclear, PV, and CSP), a number of detailed long-term forecasts are available in the
literature. We essentially used these forecasts verbatim, although in some cases (e.g. nuclear)
with some adjustment for the local context. We describe the literature on which these forecasts
are based, and any adjustments made, in the sections below. In the same vein, we used existing
UN probabilistic population forecasts developed for the 2015 revision of the World Population
Prospects (United Nations Department of Economic and Social Affairs, 2015), which arguably
represent the state-of-the-art in population forecasting practice.

Forecasts for the other key drivers (i.e. GDP growth, share of GDP claimed by the tertiary sector,
domestic coal prices, domestic gas prices) are based on expert elicitations. This is largely
because reliable literature sources were unavailable or the local nature of the information
tipped the balance in favour of expert knowledge. Detailed semi-structured interviews were
used to elicit qualitative information on possible future outcomes, followed by a quantitative
assessment of ranges of possible values. We followed generally accepted best practice (0’'Hagan
etal, 2006; Morgan & Henrion, 1990) when assessing this information, using the protocol
outlined below.

1. Pre-elicitation: prior to the interview, experts were asked to read three short
documents: one summarizing the TIMES/MARKAL model (2 pages), one summarizing
the available literature and points of view, for the quantity to be assessed (1-3 pages),
and one summarizing the literature on heuristics and biases in probability assessment
(5 pages).

2. Establishing rapport: following introductions, we reviewed the pre-elicitation
documents and the elicitation task, focussing on pitfalls of probability assessment (e.g.
overconfidence, anchoring).

3. Qualitative elicitation of factors influencing key drivers: we asked experts to identify the
important factors that might influence their later quantitative judgments and assess a
small number of scenarios that might result in a particularly high or low value for the
key driver.

4. Quantitative elicitation: to keep the elicitation manageable we assessed three points
(minimum, mode, maximum) on each distribution, modifying these where additional
information (on intermediate quantiles, for example) was offered. To avoid anchoring
we began by asking the experts for extreme lower or upper values, although some
experts insisted on starting with central values, and these requests were
accommodated. All experts were more comfortable providing information first for 2020,
then for 2035, and finally for 2050. Although this might lead later estimates to be biased
towards 2020 values - which would usually be associated with overly narrow
confidence intervals - again we felt that it would be counter-productive to force any
other order.



5. Post-elicitation verification: because our interviews were already lengthy, we elected to
send feedback to experts by email after the interview had been concluded. Feedback
included a summary of their qualitative descriptions of the system and major influences
of the key drivers and plots of the triangular probability density function obtained from
their quantitative assessments. Experts were asked to review their judgements and
make adjustments where necessary.

Information gathered using either literature searches or expert elicitation was rarely in a form
that could be directly used by the SATIM. Some “post-processing” was invariably required.
Operations included interpolation between the three key time-points in the case of elicited
quantities, currency standardization, temporal discounting, and aggregation over sources.

2.2. E3 modelling using SATIM

E3 modelling refers broadly to models that include energy, economic, and environmental
components in a single model. These have been extensively used to address policy issues
around mitigation and planning in response to potential climate changes (see e.g. Hedenus,
Johansson, and Lindergren, 2013; O’Neill, Riahi, and Keppo I, 2010; Richels and Blanford, 2008;
Rozenberg et al.,, 2010; Sassi et al., 2010)

SATIM - the South African Times Model - is an E3 model created and hosted by the Energy
Research Centre at the University of Cape Town. This model was originally developed for the
Long Term Mitigation Scenarios (LTMS) project but is now in its third generation. The SATIM
energy model is a parameterisation of TIMES for the South African energy system. TIMES is a
partial equilibrium linear optimisation model developed by ETSAP, one of the International
Energy Agency’s implementing agencies, and a successor to MARKAL (see e.g. Vaillancourt et al,,
2008; McCollum et al., 2012).

The SATIM model is a stylized representation of the whole energy system, with an optimization
step that selects the mix of technologies that meets the demand for final energy at least cost.
The model includes economic costs, emissions, and a range of sector-specific constraints that
can be applied at a point in time or cumulatively. A user interface provides a framework for
both structuring the model and scenarios, and also for interpreting results. The model has
proven useful in assessing the complex interrelationships between potential mitigation policies.

The SATIM model is “sectoral”, in that it organises the demand for energy by economic sector,
and characterises the demand for energy in a sector by the energy services required by that
sector. The SATIM model has five demand sectors and two supply sectors - industry,
agriculture, residential commercial and transport on the demand side, and electricity and liquid
fuels on the supply side. In SATIM, services supplied to each of the five sectors are driven by
technologies that require energy, with the quantity of energy required depending on the
efficiency of the technology. Useful energy (the energy service) is an exogenous model input
disaggregated by energy end-use, for each demand sector. Final energy demand is determined
endogenously using the assumed efficiencies of the least cost demand-side technologies
selected by the model. The two supply sectors and primary energy sources must meet the sum



of these demands, with the model optimizing the mix of supply-side technologies to meet the
demand for final energy at least cost.

The SATIM model includes a number of parameters and general assumptions for each sector
broadly covering: (a) the structure of the sector and its energy services as it impacts on the
demand for energy; (b) base year demand for energy in the sector; (c) technical and cost
parameters of the technologies available to satisfy the demand for energy services currently and
in the future; (d) demand projections for energy services.

Probabilistic inputs are passed to SATIM. Each combination of input trajectories results,
deterministically, in a set of trajectories for each output of interest: primarily GHG emissions
but also related quantities such as how those emissions are distributed between sectors and
electricity prices. The approach we follow is a Monte Carlo simulation. Taken as a whole, the set
of 1000 possible input trajectories results in a set of 1000 possible output trajectories, from
which distributional outputs can easily be obtained. We ran the SATIM model in both perfect
foresight and myopic (ten-year planning horizon with five-year overlaps i.e. essentially
reviewing the planning every five years) modes. The global discount rate, which affects how
technologies with high upfront capital costs (e.g. nuclear and renewables) compete with other
technologies with relatively higher fuel costs over the life of the technology, was varied at three
levels: 8% (used in most recent national planning tasks), 5%, and 11%.

3. Definition of baseline scenario

Designating a set of conditions constituting an emissions baseline inevitably involves a degree
of subjectivity. The lack of a definitive code for establishing national “baseline” conditions has
been previously identified (Clapp & Prag, 2012). The same authors propose a set of guidelines
for setting baselines, covering the following elements: start year and projection period, scope of
emissions sources, assumptions related to key drivers of projections, treatment of domestic
policy measures, modelling framework or methodology, uncertainty and sensitivity analysis,
consultation and review, and updating procedures. In the interests of clarity and transparency
we address each of these points below.

Start year and timeframe for emissions projections
Our baseline begins in 2014; projections are made to 2050.

Scope of emissions sources covered

GHG emissions that are included are CO2, CH4 (including fugitive emissions) and N:0. The
SATIM model uses five demand sectors and two supply sectors - industry, agriculture,
residential commercial and transport on the demand side, and electricity and liquid fuels on the
supply side. Our model thus covers GHG emissions for these sectors.

Treatment of domestic climate policy measures

We define our baseline with no climate policy measures for South Africa, without necessarily
imposing business as usual globally. That is, we include the possibility that global steps are
taken to mitigate climate change but that, for whatever reasons, South Africa remains in a
“business as usual” scenario, South Africa does not implement its ‘Copenhagen pledge’, that is



the 34% deviation below business-as-usual by 2020 and 42% by 2025. This primarily manifests
in international commodity prices, which influence local prices particularly in the case of coal.

Uncertainty and sensitivity analysis

As is clear from the above, uncertainty is a fundamental component of our approach. All of our
projections are probabilistic by nature: uncertainty in model inputs is explicitly captured and
this is propagated into uncertainty in model outputs via Monte Carlo simulation.

Consultation and/or review

The current document, by proposing an approach and deriving baseline estimates from this
approach, forms part of this review process. Several of our model inputs are derived through
interviews with experts in an area - GDP growth and sectoral composition, coal prices, and gas
prices. We follow standard best practice but have interviewed only a small number of experts in
each field. Model inputs are freely available for review. The SATIM model is also well
documented and has been used in a number of previous applications; it too is open to review
and scrutiny.

Updating the baseline

At the present time no plans exist to update these particular baselines. Nevertheless, the
methodology described here is flexible in this regard. Updates could be obtained with relatively
little effort. Our external data sources are all well established and thus can be expected to be
available into the future.

4. Assessment of input variables

Based on knowledge of the underlying SATIM model, key drivers of GHG emissions were
selected. These are shown in Table 1.

Key driver Units How assessed

Population People Literature

GDP growth %/year Expert elicitation

GDP composition % Tertiary Expert elicitation

Global coal prices | 2012 R/t Literature

Global gas prices 2012 $/Mbtu Literature

Global oil prices 2012 S/barrel Literature

SA Coal prices 2012 R/t Expert elicitation & further modelling

SA Gas prices

2012 S/Mbtu

Expert elicitation

Nuclear Costs, Literature

Lead Times and 2012 S OCC,

Availability years and %

PV costs 2012 S/W Literature & further modelling
CSP costs and Literature & further modelling
Capacity Credit 2012 S/W, %

Hydro Imports

GW

Literature

Table 1: Selected key drivers of GHG emissions.




For each of these drivers, our goal is to obtain probabilistic forecasts at time intervals of one
year - that is, not only annual point forecasts of mean or modal “expected values”, but also an
assessment of the statistical uncertainty around each of those point estimates, expressed as a
probability distribution. These forecasts are described in the following sections, while Figure 1
shows the probabilistic projections constructed for each input variable.

4.1. Population growth

Models for producing probabilistic population projections have been recently developed
specifically for use by the United Nation Population Division (Raftery, Li, Sevcikova, Gerland, &
Heilig, 2012). Changes in a country’s population are determined by a number of factors, but
chiefly fertility and mortality. The approach employed by the UN comprises three main models:
one for total fertility rate, from which trajectories of age-specific fertility rates are obtained;
another estimates life expectancy at birth for females and males, which are also converted into
trajectories of age- and sex-specific mortality rates; and a final model that converts the fertility
and mortality trajectories into a trajectory of all population quantities of interest (e.g. total
population, working age population).

4.2. GDP growth and composition

We independently conducted elicitation interviews with two senior academic macroeconomists
at the University of Cape Town. The elicitation team consisted of two analysts, one with a
background in decision analysis and one working in energy modelling. Interviews took place in
May and July 2014. Both experts were asked to think about GDP growth in terms of a mean
growth rate (in %) over three intervals (2014-2020, 2020-2035, 2035-2050), rather than the
annual growth rate in 2020, 2035, and 2050. The elicited probability distributions thus covered
possible values in the mean growth rate over these three periods.

Discussion with each expert lasted 1.5 - 2 hours, split roughly equally between two topics:
factors influencing GDP growth in South Africa, and future trends and scenarios. Discussion
around influential factors was remarkably consistent between experts and a number of
common features were observed. This led quite naturally into the experts sketching some
possible “high”, “low” and “in-between” scenarios for GDP growth in South Africa over the three
periods 2014-2020; 2020-2035; 2035-2050. These were assessed as qualitative, internally
consistent stories involving, for example, changes in political policies, trading relationships,
sectoral contributions, etc. Again the two experts showed a large degree of agreement in their
qualitative scenarios, which had in common a perception of little or no change in the near future
(2014-2020), limited prospects for the future but a hard floor beyond which GDP growth was
felt to be unlikely to fall.

Two key properties expressed by both experts are (a) upper and lower bounds on growth, and
(b) the mean-reverting nature of GDP growth rates. Growth rates in excess of 6% have never
been observed for long periods of time; while if growth rates drop much below 1.5% for any
significant period of time political stability is seriously at risk. Very high or low average growth
rates may be sustained over a decade, but these would almost certainly return to more
moderate levels in subsequent decades. Both experts felt that while the tertiary sector was



likely to grow at the expense of either primary or secondary sectors, large changes - more than
a 3% change in a sector’s share per decade — were unlikely. Thus, over the roughly 3.5 decades
until 2050, sectors could undergo a net change of, at most, about 10%. Currently, the tertiary
sector, excluding transport services, contributes around 65% of South Africa’s GDP.
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Figure 1: Probabilistic projections of E3 model inputs over the period 2015 to 2050.

4.3. Global energy commodity prices

We construct trajectories for international coal, gas, and oil prices from two external sources.
The IEA produces long-term forecasts of commodity prices as part of its World Energy Outlook,
the most recent version of which was released in 2014. These forecasts, of coal, oil, and gas
prices to 2050 under three mitigation scenarios, are perhaps the most widely-used long-term
forecast of commodity prices, but there are no estimates of the uncertainty around the forecasts
and are thus, on their own, they are unsuitable for our purposes. We therefore augment these
values with distributions of coal, oil, and gas prices in 2020, 2035 and 2050 obtained from an
application of IMACLIM-R, a hybrid energy-economic simulation model (Sassi, Crassous,
Hourcade, Gitz, Waisman, & Guivarch, 2010). The IMACLIM-R data expresses commodity prices
for 108 “baseline” scenarios and 108 “mitigation” scenarios, covering a range of assumptions on
parameters values representing available technology, energy efficiency, lifestyle changes, and
growth in labour productivity (Rozenberg, et al., 2010).

Table 2 shows mean commodity prices obtained from external data sources: IMACLIM-R
(indicated by the first of the two values in each cell of the table), the IEA World Energy Outlook
2015 report (International Energy Agency, 2015), and the well-known Wood Mackenzie
forecasts!. The IMACLIM-R forecasted prices are in some cases substantially larger than the I[EA
forecasts. As the IEA forecasts are both more widely used and more recent, we adjusted the
mean IMACLIM-R values substantially in the direction of the IEA values. The sole exception is oil
prices in 2020 under business as usual, where the lower estimate returned by IMACLIM-R was
felt to perhaps be more plausible given recent trends in the oil price. Mean values from
IMACLIM-R are subjectively adjusted to account for more recent information in the [EA WEO

1 Wood Mackenzie 2014. Johannesburg Coal Breakfast Briefing - Thermal Coal: Weathering the Storm.



2015 and other sources where available. Values in the IMACLIM-R rows denote indices
before/after adjustment, with the multiplier used to make the adjustment provided below.

Business as usual
2020 2035 2050

Coal IMACLIM-R (avg) 1.04/0.93 1.78/1.07 2.81/1.41

IEA WEO 2015 (NP) 0.92 1.00

Wood Mackenzie 0.92 1.22

Adjustment factor 0.9 0.6 0.5
Gas IMACLIM-R (avg) 1.10/1.27 1.30/1.43 1.37/1.45

IEA WEO 2015 (NP) 1.33 1.49

Adjustment factor 1.15 1.1 0.9
Oil IMACLIM-R (avg) 1.37/0.96 1.86/1.3 1.97/1.38

IEA WEO 2015 (NP) 0.92 1.39

Adjustment factor 0.7 0.7 0.7

Table 2: Mean international commodity (coal, gas, oil) prices, expressed as multiples of 2010 prices, under
broad “business as usual” and “mitigation” scenarios.

Since we do not explicitly model international mitigation in the current project, we average over
the two broad scenarios, “business as usual” and “with mitigation”. We obtain commodity prices
by applying the indices to 2010 prices: $75/ton for coal, $7.50/mbtu for gas, and $78/bbl for
oil. Sample trajectories of commodity prices are obtained by sampling, with replacement, 1000
sets of prices (i.e. for 2020, 2035, and 2050) from the 108 scenarios, and linearly interpolating
between the three time periods.

4.4, Gas prices

We conducted elicitation interviews with two experts on the subject of gas prices. Prices depend
primarily on the type and origin of the gas. The elicitation team consisted of two analysts, one
with a background in decision analysis and one working in energy modelling. Interviews took
place in May and July 2014. An initial discussion constructed 8 reference categories:
conventional gas deposits, unconventional deposits (shale, coal-bed methane), gas imported
from SADC countries (by pipeline, by LNG terminal or LNGT, by floating storage regasification
unit or FSRU), and gas imported from outside the SADC region (by LNGT or FSRU). The final
model included only shale gas and conventional deposits, so that we focus on these categories
here. The elicited probability distributions cover possible prices of these different gas types in
the reference years 2020, 2035, and 2050.

Discussion with each expert lasted 2 - 3 hours, split roughly equally between two topics: factors
influencing GDP growth in South Africa, and future trends and scenarios. The main factors
influencing production costs, and hence gas prices, are the “raw” costs of extracting the gas at
the wellhead, transportation costs, and the costs of building the related infrastructure. Each of
these major costs is influenced by a number of factors. In addition, when referring to the price of
gas for electricity production, the price of gas for alternate uses is perhaps the key determinant.
This is a consequence of the flexibility of gas in its final uses, and the fact that it is a commodity
traded for profit. Over the longer term, this means that prices are self-regulating. If prices drop
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dramatically, there is an effective oversupply of capital, some of which will be withdrawn and
invested elsewhere. Demands for return on capital are in turn influenced by perceived risk and
hence by government policy and political instability.

As aresult, both experts gave essentially constant uncertainty through time, in contrast to other
commodities like oil and coal. This was motivated by the gas price being, in effect, set at the
marginal producer's cost of production, including capital costs. This is very likely to be a
conventional off-shore gas well with a LNG liquefaction plant attached. Crucially, this step in the
supply curve is very large in terms of global volumes, both now and in the long term, and the
costs of production for these units are more or less homogeneous. Short-term fluctuations can
of course occur because of imbalances between supply and demand, but in general these trends
will be relatively short-lived.

Current strategic planning around gas in South Africa centers on the development of large shale
deposits within South Africa and even larger deposits of conventional gas in Mozambique.
Opinions indicated that, given the size of the available deposits and the current political climate,
shale deposits are highly likely to be developed; though uncertainty exists as to the extent. With
respect to Mozambican gas, South Africa will have to compete with other customers for
Mozambican gas on the open market. Conventional gas deposits in South Africa have thus far
been limited in their scale and impact, and both experts felt that this was likely to continue.

When eliciting quantitative estimates, one expert indicated that conventional gas prices should
be priced against a “next best alternative”. We have quantified this assessment using an average
of the expert’s assessment of other competing gas types at [3.9, 17.5] for shale and [6.8, 13.7]
for imported LNG.

4.5. Coal prices

South Africa relies heavily on coal, which currently supplies approximately 80% of energy
needs. Forecasts of potential coal prices are therefore particularly important. We performed a
set of elicitation interviews with four coal experts drawn from a range of backgrounds - private,
public, and research. The elicitation team consisted of three analysts, one with a background in
decision analysis, one working in energy modelling, and one researching institutional
arrangements in the coal industry. Interviews took place between April and August 2014.
During the course of these interviews and subsequent modelling, it became apparent that
eliciting an exogenous coal price was impossible - the values our experts had assessed were
conditioned on assumptions, primarily about the demand for coal, which were endogenous to
the SATIM model. We therefore constructed a probabilistic supply cost curve, using input costs
already elicited from experts as well as additional assumptions and external sources. The
combined demand by coal power plants and other users, endogenously determined within
SATIM, could then be applied to the reconstructed cost curve to determine the coal price.

We constructed the coal supply curve by decomposing the cost of coal into a set of input factors
elicited as part of the expert interviews: the costs of mining it, the necessary return on capital:
logistics (mainly transportation costs by road or rail); labour costs; energy inputs (in the form
of diesel and electricity); capital expenditures and the associated required rates of return on
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capital; environmental and social costs (acid mine draining, royalties/licensing, carbon tax); and
assorted “other” costs (water costs, engineering costs, replacement capital costs, employee
housing costs, and equipment costs. These are summarized in Table 3. Costs are given
separately for two regions in South Africa: the Central Basin, which is where all current power
stations and coal mines are situated; and the Waterberg, a relatively remote area of South Africa
containing vast and unexploited deposits of mostly low-quality coal.

Central Basin Waterberg
Con- Existing New truck & rail Existi New Surface New Underground
veyor truck & ng
rail L M H L M H L M H

Saleable Production 188 200 200 200 232 106 132 281 595 298 364 592
Cost
Transport 1 100 84 100 100 1 10 17 23 10 17 23
Capital 46 46 59 59 59 23 27 27 27 68 68 68
Return on Capital 24 24 129 | 161 211 33 59 77 96 148 194 241
Acid mine drainage 0 0 10 30 50 0 10 30 50 10 30 50
Total 259 370 482 | 550 652 163 238 432 790 534 672 975

Table 3: Breakdown of parameters for the coal supply curve and associated uncertainty.

The saleable production cost is a function of labour, energy inputs and other running costs per
ton mined, and the stripping ratios and washing plant yields. The large range of possible prices
in the Waterberg region is due to uncertainty regarding stripping ratios and washing yields.
Transport costs are a function of how the coal is transported from the mine to the power plant
(conveyor/rail/road) and unit cost of transport of each mode. We assume a higher share of non-
conveyor transport in the Central Basin assuming that the new mines will not be located near
power plants. The price of diesel is an important factor for road and this is endogenous to the
model. The assumed ranges for mining and transport are shown in Table 4.

Coal mining Central Basin Waterberg
assumptions Convey | Existing Conveyor Existing Surface Underground

or truck& | L M H truck& | L M H L M H

rail rail

Stripping 2 1.8 1.8 1.8 1.8 0.6 0.6 1.6 2.5 4.5 4.8 5
Ratio
Washing Yield 80% 70% 70% | 70% | 70% 50% | 40% | 33% | 25% | 70% | 60% 50%
Transport assumptions (Share of total coal transported from mine to power plant)
Conveyor 100% 0% 0% 0% 0% 100% | 75% | 58% | 40% | 75% | 58% 40%
Rail 0% 21% | 40% | 21% | 21% 0% | 13% | 21% | 30% | 13% | 21% 30%
Road 0% 79% 60% | 79% | 79% 0% | 13% | 21% | 30% | 13% | 21% 30%

Table 4: Detailed assumptions on uncertainty on the stripping, washing and transport parameters.

The resulting average prices for the Central Basin, Waterberg and combined is shown below.
Figure 3 below shows the result of averaging the costs sampled from the ranges described
above weighted by the production (shown in Figure 3) of each supply route for each
corresponding cost scenario. The weighted average matches the combined elicited values quite
well.
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Avg Coal Price to Central Basin Power Plants (2012 R#)

Avg Coal Price to Waterberg Power Plants (2012 Rft)

Figure 2 Average coal price seen by coal power plants

Avg Coal Price to Power Plants (2012 Rft)
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Figure 3 Production Range for different supply routes

4.6. Solar investment costs

Solar technologies are relatively young, and further advances are generally expected to lead to
lower costs. We generate possible overnight investment costs using a simple learning model,
using the following four-stage approach.

1. For abaseline solar technology, simulate the total installed capacity at 2030 and 2050,
using distributions obtained from external sources.

2. Simulate a learning rate over the period 2014-2030 and 2030-2050, using historical
learning rates with some additional uncertainty added.

3. Use standard learning models scaled to a benchmark of 2010 solar costs to calculate
investment costs over the period 2014-2050.

4. Calculate investment cost trajectories for other solar technologies by scaling the costs of
the baseline technology according to current price differentials.

These steps are described in detail below. Since calculations for PV and CSP are very similar, we
treat these areas together in this section.

Total installed capacity

The 2014 IEA Energy Technology Perspectives report (International Energy Agency, 2014,
p148) gives expected values of total installed capacity of PV and CSP in 2030 and 2050 under 2-
degree (with or without high renewable activity), 4-degree, and 6-degree scenarios. We use the
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4-degree and 2-degree (without high renewables) estimates as lower and upper bounds for our

forecasts. These are given, together with estimates of recent installed capacity, in Table 5.

PV csp
2014 2030 2050 2013 2030 2050
4DS 176 602 1813 3.4 40 185
2DS 176 1927 4626 3.4 155 646

Table 5: Estimates of total installed capacity of solar technologies (GW)

We model total installed capacity in 2030 and 2050 as a beta distribution scaled to lie between
the bounds given in Table 5. The beta distribution allows for a flexible modelling of constrained
random variables. We model unscaled PV capacity as B(2,3) and CSP capacity as B(3,3).

Learning rates

Learning rates for CSP are simulated from a beta distribution B(4,2) scaled to lie between 5%
and 11%. This gives a symmetric distribution centered on 9%, with 95% of the probability mass
lying between 5.7% and 10.5%.

Learning rates for PV modules are simulated from a beta distribution B(3,3) scaled to lie
between 18% and 25%. This gives a symmetric distribution with a median of 21.4%, and 95%
of the probability mass lying between 19.3% and 23.6%. Learning rates for PV balance-of-
system are simulated from a beta distribution B(3,3) scaled to lie between 9% and 12.5%. This
again gives a symmetric distribution with a median of 10.8%, and 95% of the probability mass
lying between 9.6% and 11.9%.

Investment costs for baseline solar technologies
Investment costs Y are calculated as a function of total installed capacity C using a standard
learning model

C )logz(l—b)

Y=Y0(C_O

where Y, and C, are investment costs and total installed capacity at some baseline period and b
is the learning rate.

For CSP, there is no long-term history with which to reliably estimate learning rates and identify
baseline periods. We therefore initialise our learning rate using the most recent information
available to us, the empirical project costs of a CSP plant constructed in South Africa in 2013,
giving starting values of Yy = 6.42 and C, = 3.4.

The situation for PV is somewhat more complex. Considerable historic data exists for PV module
costs, from which a learning rate of 20% has been estimated. Prior to 2000, cost predictions
made using a learning model above with b = 0.2 matched observed costs almost exactly, but
since then costs have decreased both slower and faster than predicted by learning alone in
2013-2014. Currently, costs are substantially lower than what the standard learning model
would predict, but we consider this to be unsustainable, as it is largely due to oversupply and
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Chinese government subsidies. We therefore assume that the trajectory of observed costs will
return to the trajectory predicted by the learning with b = 0.2, but that the time taken to
achieve this return is uncertain.

We operationalize this by forming a weighted average of the learning model above (predictions
made using b = 0.2 and a starting point of, for example, Y; = 1.39 and C; = 70.0) and the
current PV module cost of Y, = 0.8. The final cost is then given by

C )logz(l—b)

Y = (UYO (_
Co

+ (1 — w)Y,

where w is a linear weighting function taking on the value w = 0 at the current installed
capacity and w = 1 at some uncertain future time 7 (i.e. the year in which the learning curve is
rejoined). Noting that the learning model with b = 0.2 predicts costs below the current costs

Y, = 0.8 at a capacity of C = 390 GW, the predicted capacity in 2020. We generate 7 from a beta
distribution B(3,3) scaled to lie between 2016 and 2027.

For PV balance-of-system costs, current costs are Y, = 0.93 at a total installed capacity of C, =
130. Learning rates for the balance-of-system costs, however, are expected to be substantially
lower than historical learning rates for module costs, as reflected in the choice of parameters for
the respective beta distributions. These investment costs, calculated for “baseline” PV (utility
with no tracking) and CSP (parabolic trough with 6-hour storage capacity) technologies, are
converted into costs for other technologies by multiplying these by a factor held fixed at their
current values i.e. at the present-day (2014) cost ratios,

4.7. Nuclear costs

Anadon, Nemet, & Verdolini (2013) report responses from 67 US and European experts about
the future costs of nuclear power. Experts provided medians and 10% and 90% percentiles of
expected overnight capital costs in 2010 and 2030 for Generation II1/Il11+ reactors under
business-as-usual investment in R&D. These assessments cannot be directly used as estimates
of nuclear costs in South Africa due to different material and labour costs. However, as relatively
few nuclear facilities are built worldwide we might expect future trends and uncertainties in
costs to be roughly comparable between countries that adopt similar regulation around nuclear
facilities. We therefore standardised each expert’s assessment by expressing their judgments
relative to their 2010 median assessments. That is, their 2010 median judgments were set to
100, and all other judgments were calculated relative to this baseline.

Through this transformation we found that, on average, experts’ 10% percentile assessments
were 75% of their 2010 median assessments in 2010 and 78% of their 2010 median
assessments in 2030. Experts’ median percentile assessments were 102% of their 2010 median
assessments in 2030 (and of course 100% in 2010). Experts’ 90% percentile assessments were
133% of their 2010 median assessments in 2010 and 135% of their 2010 median assessments
in 2030.
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It is thus clear that experts express relatively little change in uncertainty ranges between 2010
and 2030, and this might well be reasonably extrapolated to 2050. Conservatively though, we
made our 2050 assessments 10% more uncertain than 2030, giving a ratio of 0.76 for the 10%
percentile, 1.02 for the median, and 1.38 for the 90% percentile.

For other key drivers, we assess estimates such that it is “very unlikely” that more extreme
values occur. Without specifying the precise percentile, we suggest that the resulting judgments
are more extreme than the 10/90% percentiles used here. We therefore introduce a simple
mechanism for making the judgments more extreme: before applying the transformation above,
we first expand the range of each expert’s assessed judgments by assuming a triangular
distribution with the specified percentiles, and extrapolating this distribution to its minimum
and maximum values. This results in a triangular distribution with parameters (0.71, 1, 1.41) in
2010, (0.74,1.02,1.43) in 2030, and (0.71, 1.02, 1.47) in 2050.

Finally we apply these distributions to the most recent estimate of overnight investment cost in
South Africa, the $5800/kW (2012 dollars) given in the 2013 update to the South African
government’s Integrated Resource Plan (Department of Energy, 2013). The final distributions
used are: Tri(4109, 5800, 8200) in 2010; Tri(4301, 5942, 8269) in 2030; and Tri(4119, 5942,
8528) in 2050.

4.8. Hydro Imports

The Southern African Power Pool distributes electricity throughout the region via major
infrastructure corridors. A number of regional hydro import projects have been identified in the
recent IRP (DOE 2011) and IRP update (DOE 2013). Given recent developments around Grand
Inga an additional 3.6 GW is considered, parameterised as per (SNEL et al. 2011). The
distribution assumed for imported hydro is shown in Figure 1.

4.9. Post-processing of inputs

Several input variables required additional processing in order to transform them into forms
suitable to pass to the SATIM model i.e. annual time series. Two main types of post-processing
were required. Firstly, where we have collected information at only a small number of time-
points, we generate probabilistic projections for each remaining time-point by first simulating
randomly from the existing probability distributions, taking into account any desired inter-
temporal relationships, and then by simulating values between elicited time points, again taking
into account any inter-temporal information gathered as part of the elicitation or modelling
process. Different simulation approaches may be required for the first step depending on the
nature of the inter-temporal information. In the appendix we describe two algorithms that can
be used when inter-temporal information is expressed as a matrix of correlations (Algorithm 1)
or as a process of mean-reversion (Algorithm 2). We use linear interpolation, with or without
the addition of a noise component, to simulate the remaining values, although other approaches
are possible.

Where information has been collected from a number of sources (e.g. by elicitation from several
experts), we combine these sources using a linear opinion pool (French, 2011). This is
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equivalent to simulating projections from each source in proportion to the desired weight of
that source. The result is a linear opinion pool for projections.

Finally, we assemble the projections independently generated for each input variable into input
matrices, each of which combines a single set of projections for each of the key drivers. In doing
so, we need to account for correlations between inputs (for example, population and economic
growth are positively associated), but assessing the full correlation matrix is difficult. Experts
exist with subject areas, but the assessment of inter-variable correlations requires an extremely
broad and deep knowledge, encompassing all the input variables. We therefore place a
moderate positive correlation of 0.3 between population and GDP growth; the international
commodity prices obtained from IMACLIM-R are already correlated in that they are drawn from
the same set of scenarios. Apart from these inter-relationships input matrices are generated by
sampling independently from the input distributions.

5. Probabilistic projections of baseline GHG emissions

Our main results are shown in Figure 4. Most baseline projections of CO; emissions in South
Africa rise slowly to 2030, followed by a period of more rapid increase of emissions from 2030
to the end of the forecasting period, 2050 (Figure 4a). Enormous uncertainty exists around the
precise quantity of emissions, however, particularly after 2030. Our results indicate that 95% of
trajectories lie between 445Mt and 475Mt CO; equivalent in 2020; between 415Mt and 635Mt
in 2035; and between 420Mt and 1000Mt in 2050. The median projection is for emissions of
COzequivalent to rise from 420Mt per year in 2010 to 500Mt per year in 2035 and 670Mt in
2050.

Our results show that a no climate policy scenario has wide ranges of GHG emissions, with
median projections rising throughout, but moderately: from 420Mt CO2-equivalent per year in
2010 to 520Mt per year in 2035 and 675Mt in 2050. Median projections should be interpreted
cautiously. For example, the median projection of 520 Mt CO2-equivelent in 2035 is within the
‘peak, plateau and decline’ (PPD) trajectory range in national climate policy?, which is 398 to
614 Mt CO2-eq for 2035. The range in our modelling projects GHG emissions from 450Mt and
640Mt in 2035. We emphasise the high level of uncertainty in absolute emission projections,
especially further into the future, after 2030. It is more advisable to consider ranges, than the
median values.

Per capita emissions are also expected to rise, though by less than absolute emissions (not
shown here). Substantial uncertainty again exists in the forecasts, particularly beyond 2030.
Our results indicate that 95% of trajectories lie between 8t and 8.4t per capita in 2020; between
7.6t and 10t per capita in 2035; and between 7.6t and 15.3t per capita in 2050. Median per
capita emissions remain roughly the same as present-day values of 8t per capita until 2035,
after which they rise steadily to just over 10t per capita in 2050.

Z Government of the Republic of South Africa, National Climate Change Response White Paper, October
2011
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2050.

Emissions intensity, that is GHG emissions per unit of GDP, falls consistently and approximately
linearly throughout the forecast period (Figure 4b). Nevertheless substantial uncertainty still
exists, particularly after 2030. Our results indicate that 95% of trajectories lie between 0.65 and
0.68kg/$GDP in 2020; between 0.42 and 0.52kg/$GDP in 2035; and between 0.28 and
0.48kg/$GDP in 2050. Median forecasts are for CO2 emissions per dollar of GDP to drop from
current day levels of 0.66kg/$GDP to 0.46kg/$GDP in 2035 and 0.37kg/$GDP in 2050. The
strong positive relationship between GDP growth and GHG emissions is shown in Figure 4c.

Uncertainty around baseline GHG emissions in South Africa is largely due to uncertainties
around GHG emissions in the power sector i.e. electricity generation. In nearly all projections,
electricity production accounts for the majority of GHG emissions, but the precise quantity of
emissions is subject to enormous uncertainty, substantially more than emissions in any other
sectors (Figure 4d).
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Uncertainty around GHG emissions due to electricity production relate in turn to the relative
mix of fuels used to satisfy South Africa’s demand for power. These are summarized in Figure 5.
The primary uncertainty is the extent to which gas replaces coal in the production of electricity
(Figure 5a and Figure 5b). Our results show that 95% of trajectories indicate that coal
contributes between 45% and 75% and gas between 0% and 38% of electricity produced in
2035, from their current shares of 85% and 0% respectively, and that coal contributes between
15% and 85% and gas between 0% and 75% in 2050. That is, almost anything can happen:
although unlikely, gas may almost entirely usurp coal as the main source of South Africa's
electricity. Median coal shares decline from 85% in 2020 to 70% in 2030 and remain at this
level to 2050. Median gas shares remain near zero throughout the forecast period.

Nuclear and PV technologies do not become major contributors to South African electricity
production. Most projections are for nuclear to decline as a proportion-of-total, as no new
plants are built, and for PV to increase marginally but remain a minor contributor (Figure 5c).
Concentrated solar power (CSP) is subject to substantial uncertainty. Our results show that 95%
of trajectories indicate that CSP contributes between 0% and 5% of electricity produced in
2035, and between 0% and 18% in 2050, although the median projection is for CSP to
contribute little or nothing (less than 1%) throughout the forecast period (Figure 5d).
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Figure 5: Probabilistic projections of the share of electricity production in South Africa contributed by (a)
coal, (b) gas, (c) PV, (d) CSP over the period 2010 to 2050.

Figure 6 shows the sensitivity of our main results to global discount rate assumptions. We show
results at 2050 under various model assumptions; the same conclusions are drawn if other
periods are examined. GHG emissions are extremely robust to the assumption of perfect
foresight; emissions obtained from a myopic model show no qualitative differences and are thus
not shown here. Emissions decrease marginally at higher discount rates (Figure 6a), even as the
fossil fuel share of electricity production increases (Figure 6b). This is a direct result of gas
replacing coal as a fuel source (Figure 6¢). The increased use of gas to generate electricity at the
higher discount rate is a result of both shale gas and LNG being competitively priced in relation
to coal and other fuel sources (Figure 6f), whereas this does not occur at lower discount rates
(Figure 6d and e).
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Figure 6: Sensitivity of results to discount rate assumptions.

6. Discussion and conclusions

Baseline forecasts play an important role in strategic planning around responses to climate
change, providing inputs into discussions around fair allocations among countries and
responsibility for mitigation actions. Drawing out the detailed policy implications of the
baseline projections provided here is beyond the scope of the current project, but it is not
difficult to see the challenges that South Africa faces in this regard. South Africa is in a fairly
unusual situation: it depends heavily on coal for power generation, and under “business as
usual” policies such as assumed here, this dependency is projected to continue for some time,

20



perhaps to 2050. At the same time it has a population that is projected to grow substantially in
size, coupled with relatively modest economic growth. Improving the living conditions of a
substantial proportion of the population is likely to be a challenge, even under a “business as
usual” dependency on coal.

The current project is far from a definitive statement of South Africa’s baseline projection for
GHG emissions, rather it should be seen as a first step along this process. Our results show that
uncertainty increases exponentially over time, and that for some key variables (e.g. the relative
mix of coal and gas for electricity production) almost anything can happen over a period of
decades. Median projections can be calculated, but they are no prediction of the future. We
stress again that this uncertainty is “baseline” uncertainty i.e. under the assumption of relatively
unchanging policies. Assessments incorporating policy uncertainty will be even more variable.
As aresult, baselines need to be regularly updated, perhaps at intervals of no more than five
years. Related to this point, our forecasts of GHG emissions are also based on forecasts of key
input variables, obtained from a variety of sources. These too will change over time, and
updates should be incorporated into the baseline forecasts when information on changes in
input variables becomes available. This also motivates for the regular updating of baseline
projections. Our projections are based in places on the assessments obtained from only a small
sample of experts; enlarging this sample provides another avenue for further work. Although
autocorrelation within each key input variable is modelled explicitly, correlations between
input variables, except in the case of the international fuel prices for coal gas and oil, and in the
case of population and GDP, are assumed to be zero. That is, we sample independently when
constructing combinations of input variables. The difficulty in this regard is simply finding
experts with sufficient knowledge to assess these correlations. Experts exist with subject areas,
but the assessment of inter-variable correlations requires an extremely broad and deep
knowledge, encompassing all the input variables. The exceptions here are international
commodity prices (coal, gas, oil), for which correlational information is available.

Our results indicate that perhaps the key uncertainty in the setting of baseline GHG emissions in
South Africa is the relative price of coal to gas. This is due to the large share of emissions from
electricity generation. Uncertainty in CO; per GDP is much narrower than uncertainty regarding
the absolute level of CO; emissions. The reason for the narrower range is that the variability
caused by different GDP growth scenarios is partly taken away. This might make emissions
intensity an attractive metric for mitigation commitments. The absolute result in future GHG
emissions would still, however, be subject to uncertainty about the GDP projection assumed at
the time.

While the uncertainty explored here focuses on supply technologies and fuel prices,
uncertainties also exist in the future cost and performance of demand technologies such as
advanced air-conditioning and electric cars, as well as the uncertainty in the costs of the
supporting distribution infrastructure required for the mass uptake of new fuels for South
Africa, such as natural gas in the transport, residential and commercial sectors and electricity in
the transport sector. Incorporating demand-side uncertainty is an important area for future
research, and one that is likely to widen uncertainty bounds further, particularly on the lower
end of the distribution of GHG emissions. Related to this point, our approach depends heavily on
the underlying SATIM model, in terms of how energy inputs are linked to energy outputs. The
model has been developed over a number of years specifically for the South African context, and
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is perhaps the most comprehensive model of national energy production and consumption
available at the current time. Nevertheless the model makes a number of assumptions that may
not hold over the long-term. Fundamental or extreme changes to the system from climate
impacts e.g. increase in temperature, are not taken into account by SATIM.
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Appendix A: Details of post-processing of elicited data sources

Algorithm 1: Generating correlated random samples from arbitrary distributions

Suppose we wish to simulate N values from each of a set of P arbitrary distributions

Fy, F,, ..., Fp, with the resulting simulated values having a correlation matrix X. An algorithm for
doing this to good approximation is:

1. Simulate N samples from a multivariate standard normal distribution with correlation
matrix X.

2. Convert the values generated in the previous step into probabilities by applying the
univariate standard normal CDF to each of the P samples i.e. independently.

3. Simulate draws from the desired distributions by applying the inverse CDFs
Fr 1, F;1, ..., Fp ! to the probabilities generated in the previous step.

The simulated values preserve the desired correlation structure only approximately, because
the transformation in step 2 preserves the rank order rather than the exact correlations.
Nevertheless in general testing we found the approximation to be good, and given the inherent
uncertainty in specifying the correlation in the first place, any errors introduced by the
approximation are likely to be negligible.

Algorithm 2: Generating “mean-reverting” random samples from arbitrary distributions

Series in which extremely high or low values should be followed by periods of average (or at
least, much less extreme high or low) values pose a problem for Algorithm 1 because the
desired relationship is not easily expressed using correlations defined between the original
variables. We use the following procedure:

1. Simulate N independent values from each of the desired distributions F;, F, ..., Fp using
standard methods. For each t for which mean-reversion should occur from t to t + 1:

2. For each of the values simulated from F; (denoted x;;,i = 1, ..., N) compute the
“extremeness” of the observation, as measured by its absolute difference to the sample
mean X, i.e. e;; = |x;; — X¢|, and rank order these in descending order.

3. Allocate each observation x;; into a “mean-reverting” group with probability inversely
proportional to the rank of e;;.

4. Allocate each of the Nz observations in the mean-reverting group to intermediate
positions in the rank order of simulated values from F;, ;. This can be done in several
ways. We identified the Ny most central values in x;, 1, and then reorder these so that
the correlation between the ranks of x; and x;, 4 is some desired value p, using
Algorithm 1. This is done so that there is still some positive correlation between time
periods within the set of observations that are subjected to mean reversion. That is, a
very large observation at time t will tend to be less extreme, but still above the median,
att + 1.

5. All observations not in the mean reverting group are allocated to the remaining N —
Ny ranks at t + 1 by reordering these so that the correlation between the ranks of the
remaining values of x; and x;., is some desired value p, again using Algorithm 1.
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