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'hirsty Energy Case Study in South Africa @,’

= The World Bank has partnered with the Energy Research Center (ERC) of
the University of Cape Town to incorporate water constraints in their
energy planning tools.

= The ERC has developed and maintained an least cost optimization energy
systems model for South Africa on the TIMES/MARKAL platform called
SATIM. (http://www.erc.uct.ac.za/Research/esystems-group-satim.htm)

= Before this project water was only represented and tracked in SATIM as a
commodity. Its cost and regional aspect was not reflected at all.

= The World Bank’s Thirty Energy initiative in South Africa has completed
the development of an integrated energy-water model and preliminary
results have been produced and will be briefly discussed in this
presentation.


http://www.erc.uct.ac.za/Research/Otherdocs/Satim/SATIM Methodology-v2.1.pdf

ater-Energy Planning in South Africa @y
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Developing the SATIM-

Water Model:

1. Matching energy producing
regions with water resource
areas (WMASs) in South Africa

Table 1: Technologies represented in SATIM-W for Phase 1 implementation by water supply system.

WSR WMA Region Activity

¢ (Open-cast coal mining

A Limpopo Lephalale ¢ Coal thermal power plants with FGD option
¢ Coal-to-Liquids refineries
Mpumalanga, s Open-cast & underground coal mining
e S B Olifants Withank ¢ Coal thermal power plants with FGD option.

¢ Coal-to-Liquids refineries
¢ Open-cast & underground coal mining
c Upper Vaal Mpumalanga, e (Coal thermal power plants with FDG option
Secunda ¢ Inland gas thermal power plants
¢ Inland Gas-to-Liquids refineries

Need to “geo-reference”
somehow the power plants
and energy facilities in order

Lower Northern Cape,
to reglona I |y constra | nt the b1 Orange Upington e Concentrated Solar Thermal Power Plants (CSP)
amount of water available : Lower/Upper  Northern Cape, ~ ® Shale gas mining
D2 Orange Karoo * (as thermal power plants
o . q s Inland gas-to-liquids refineries
by aSSIgnlng the d Iffe rent R n/a Richards Bay Coal e (Coastal open-cycle coal power plants with seawater

Export Terminal cooling and seawater FGD option

power plants and energy
extraction locations to their
basin

In SATIM-W the cooling systems for thermal power plants may be either closed-cycle wet-cooled or
direct dry-cooled. The model is free to choose the cooling type, except for open-cycle wet-cooled
plants which are restricted to the coastal region, as part of determining the least-cost energy-water

- — - integrated system.



Opportunities to Explore Key Policy Questions @7’

So far for Phase 1:

@ Is Eskom’s Current Dry-Cooling Coal Generation Policy
Economically Justified?
2.

How do stricter environmental controls impact coal
investments in the Waterberg?

3. What is the impact of requiring power stations to retrofit FGD?

4. How does accounting for the cost of water impact shale gas
production?

@ In a carbon constrained world, what is the likelihood of
stranded assets?

5(a) Is Solar capacity expansion water constrained?

6. How does climate change alter regional energy investment
decisions?



Is Eskom’s Current Dry-Cooling Coal Generation @
- Policy Economically Justified?

Water not Costed Water Costed
SATIM Reference (BAU)
r 18 600,000 1.8 Other
1.6 Wind
1.4 S0 Solar Thermal Wet
F 1.2 400,000 —Soar Themmal Bry
. E Solar PV
E E‘_; 300,000 MNew Coal Wet
= 2 = New Coal Dry
0.6 200,000 B Existing Coal Wet
3.4 m Existing Coal Dry
100,000

e Nuclear

0 Water Intensity

2015 2020 2025 2030 2035 2040 2045 2050

When water is costed in a least cost optimisation planning model
dry cooling replaces wet cooling for coal power despite efficiency
penalties.

Water intensity drops to a quarter of the ‘no water cost’ 2050 level.
Why is the model choosing wet cooled Solar Thermal though?




egional Water Demand

- = The Waterberg (Region A) is the region more exposed to the water-
energy nexus. Non-energy water demands dominate the other regions. In
the Olifants region, water needs for the energy sector shrink substantially
as existing power plants retire.

Waterberg: Region A Olifants: Region B
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Water consumption (Mm3) by region




. Regional Water Infrastructure Expenditure (Ref. Case)

Expenditure: Regional Expenditure: Waterberg
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Annual Investment in Water Supply Infrastructure

= Even with dry-cooling coal generation expansion in the Waterberg
requires high expenditure and drives up the regional cost of water.




1. Regional Water Supply Costs (Ref. Case)

16.00
144,00
1.2.00)
10.00 —\Naterberg: A

s, )| if a5 B

8.00
s | pr Vaal: C

2010 ZAR/m3

6.00 Orange River: D

4.00

2.00

0.00
2015 2020 2025 2080 2035 2040 2045 2050

Average Regional Water Supply Costs

=  With the result that an extreme regional disparity in supply costs can
result.

Note: The base cost is derived from the existing weighted average tariff to power plants (weighted by
generation) which regionally ranges from 50c to R4/m?3



n a carbon constrained world, what is the
~ likelihood of stranded assets?

&
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Modelled with 14 & 10 Gton CO2 Cumulative Caps

Solar Thermal, PV and wind dominate generation by 2050

For 10 Gton Cap significant Nuclear by 2035



carbon constrained world, what is the
kelihood of stranded assets?
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Coal to Liquids Capacity Shuts down Early



n a carbon constrained world, what is the @
kelihood of stranded assets?

Existing Coal Capacity vs Capacity Factor
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* The model also chooses to underutilise coal generation assets



a carbon constrained world, what is the
likelihood of stranded assets?
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 But now we can also see that water assets are stranded under
carbon constraint with premature escalation of water costs
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) What about the Orange River Basin and RE?
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Thank You

For more information on Thirsty Energy contact:

Diego Rodriguez , Senior Economist, Water Global Practice
drodriguezl @worldbank.org

ERC

www.worldbank.org/thirstyenergy

ENERGY RESEARCH CENTRE
University of Cape Town

www.worldbank.org/water | www.blogs.worldbank.org/water | ¥ @WorldBankWater

GRS waTER Korea
bt 200 PARTNERSHIP Q A

STETENICR Vi/ \ Green Growth @ WORLD BANKGROUP
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Partnership


http://www.worldbank.org/thirstyenergy

‘Further Background Slides




- Thirsty Energy Initiative

GOAL.: to contribute to a sustainable management and development of the
water and energy sectors by increasing awareness and capacity on
integrated planning of energy and water investments identifying and
evaluating trade-offs and synergies between water and energy planning.

1

Implementation of case studies using existing tools when possible

Knowledge dissemination, advocacy and capacity building

/thirsty

energ




rtners @

Form stronger alliances. The challenge presented by the nexus is too large for
any country, region, development finance institution or implementing agency
to tackle alone

Funding Partners: Private Sector Reference Group

Water Partnership Program (WPP) Abengoa,
ESMAP Electricité de France (EDF)
Korea Trust Fund for Green Growth Alstom

Veolia

Other collaborating partners
International Energy Agency (IEA)
Stockholm International Water Institute
World Resources Institute (WRI)
UN Water / Sustainable Energy For All
GlZ
Others



outh Africa;

the case of a Water Scarce Country

Gap between existing supply and projected! demand in 2030,

% of 2030 demand

Surplus Luvutu-

@ Moderate (0 to -20%)
® Severe (-20% to -80%) Crocodile West

and Marico

Lesothe
e Upper Orange
Mueti to Umnzimbkulu
Olifan Mzimvubu-
Doom Kelskamma
Fish-Tsitskamma

2% oo 3%
4% 0

5%

Lower Cran
Its-
Breade

Total Installed
capacity in 2010
44,200 MW

B Thermal - Coal

M Gas / Diesel OCGT
" Nuclear

B Hydro

B Wind

® Pumped Storage

Sources: ESKOM and Department of Energy of South Africa

Water scarce country with very stressed
basins in terms of water allocation. Existing
water supply systems at or approaching
capacity: 97% of existing supply allocated.

Coal Thermal Power plants account for almost
90% of the power capacity installed

Competition for water across sectors will
increase — Power plants have priority, which
could negatively affect other sectors such as
agriculture

Fracking for Shale Gas is being explored,
which will put additional pressure on water
resources



arginal Cost Curves for Water Supply @

Lephalale i Upper Olifants
s S — — 5,0 e
aEE e i Region B
0 (Old Coal)
i En .
10 _‘_l_' 10 _I—-
0 . : e : . :
0 200 400 B00 0 100 200 300
40 - Vaal 403 Lower Orange
5 30 - 30 -
Region C e [ Region D
(Old Coal) § ; 20 | (CSP & PV)
3 10 _r—\_ 10
0 : : e : . : :
0 1000 2000 3000 i} 100 200 300 400

Additional System Yield (Mm?a) Additional System Yield (Mm?a)



ting Water Supply Infrastructure in SATIM-W @

Water Supply System for Region A
Limpopo WMA
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* ATIMES model can be readily adapted to track water requirements for energy (and vise versa), either by
representing exogenously prepared (MWSCC) or depicting to full infrastructure build-out options
available

*  The water subsystem is introduced into SATIM-W by means of explicit water supply and infrastructure
options for each of the (WSR) where major energy facilities are found, and their associated energy
consumption (e.g. electricity for pump-stations or diesel for truck transport)

Modelling the water-energy nexus in South Africa 8



SUPPLY
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lodelling the Future: Scenario Factors

Climate Impact
Water intensity of use
CO, cap/price
Hydro imports
RE & Nuclear options

Water Availibility
Water supply yield
Cost of utliisation (supply &treatment)

Economic outlook
Discount rate
Water & energy demand
Technology costs

Fossil Fuel Resource Utilisation
Coal and domestic shale gas exploitation
Synthetic fuel refineries and power
sector

Environmental
Wastewater treatment
Air emission controls (FGD)

23
Themes explore the interaction of the various factors that would influence planning decisions in

the energy supply sector from a water and energy perspective

Modelling the water-energy nexus in South Africa
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