

Geographical Load Forecasting - The Tutorial -

Presenter: Monde Soni

Seminar: Domestic Electric Loads (consumption, demand & profiles)

Venue: John Maree Auditorium, Eskom Academy of Learning, Midrand

Date: 12 November 2014

Powering your world

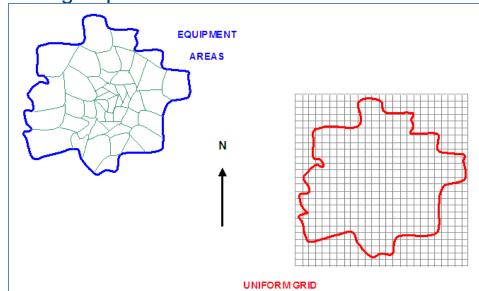
Introduction

- This tutorial demonstrates how the domestic load (consumptions, demand and profiles) is used in Eskom Distribution (Dx) Planning, to forecast the load and plan the electrical infrastructure. The presentation will deal with the following aspects:
 - Planning Process/Methodology Overview;
 - Small Area Forecast;
 - Geographical Based Load Forecast Methodology;
 - Load Subclasses;
 - Load mix for capacity planning;
 - Potential Demand Modelling;
 - Conclusion; and
 - Areas of Improvement.

1. Background

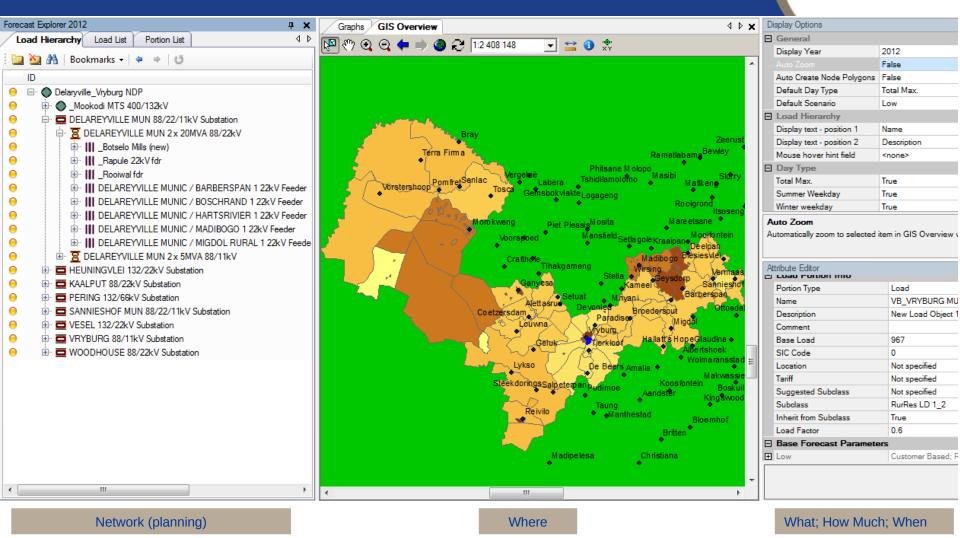
Planning Process

Study Objective & Review o Study Area [1.1]	Gather & Verify Network & Load Information [1.2]	Load Forecast	Analyse Existing Network Capability & Define Problem [1.4 Statement	Alternativ	Capital Plan & Financial Evaluation [1.6]	/ FIUJELL
Define study objective Compile map showing existing NMP/NDP boundaries Map showing existing networks Prepare network SLD's Review/redefine Study Area boundaries	 Geographical background data Network asset information Load (MD) profiles Reports, Guides, Standards, etc. Customer data Electrification data Performance KPIs Transmission plans Refurbishment plans Environmental issues 	 Electrification Plan Land use study Demographic study Econometric study Zoning exercise Load forecast geo-based trend-based Demand & energy forecast Scenario creation 	 Build network models Analyse existing network capability present loads future loads future loads Analyse plans refurbishment electrification environmental Analyse reliability requirements Define problem statement 	 Formulate alternatives Map alternatives Technical evaluation load flow fault studies Reliability analysis Life cycle costing Economic evaluation Integrated plans transmission sub-transmission reticulation 	 Select Preferred Alternatives Capital Requirement Plan Phasing Financial Evaluation cash flow income tariffs 	 Reporting conceptual plan geographical presentation Approval NMP / NDP Project initiation DPA's / CRA's Environmental assessments SEA's (EIA's) Long lead-time equipment Servitude acquisition



Geographical Based Load Forecast

- Eskom
- Small Area Forecasting concept dates back to the early 1950's.
- GLF:Geo-based load forecasting can be defined as the approach to forecast the future electrical demand by splitting the study area into smaller subdivisions on the map, followed by assignment of electrical properties to the subdivisions using the load classes, forecasting the individual subdivisions on a coordinated or non-coordinated basis, and aggregating the sum of the forecasts to cover the bigger study area. The process involves defining load classification according to the economic class and electrical demand properties.


5

- The load is forecasted to show the following aspects:
 - Where,
 - When,
 - How Much, and
 - What.

PowerGLF Tool

Defining the subclass

- The subclass may be defined as the load categorisation according to economic class, energy consumption characteristics and location.
- It is used as means of converting input information (to PowerGLF) into electrical terms (kVA, MW, etc).
- PowerGLF consists of a Class Library, that hosts load classes and subclasses. The library has the following attributes:
 - Load Classes
 - Subclasses
 - Economic classification
 - 24-hour consumption profile
 - Growth Curves associated with the subclass
 - ADMD (kVA and kVA/ha)

Load Subclasses Library

0-01:00

03:00

05:00

07:00

09:00

11:00

13:00

🦢 🐚 🛃 🗛 🌆 🚛 "				
lame	Description	General		
		Name	RurRes LD 1_2	
Administrator Classes		Description	Income 0 - 1800. Mixture of mode	
New Class	New Class	Comments		
Open Space	nen olda	Prefered forecast method	Customer Based	
Domestic	E	Subclass association		
		Spatial Forecast Enabled	False	
UrbTwn HD 71_8h	Income 11600 - 19116. Normally high-density, in complexes that incorporate security or other shared facilities. Dwellings may be single or mult	Cust. No. Forecast Enabled	True	
Urb Res MD 8I_9I	Income 11600 - 24500. Built floor-area of main dwellings is around 190 m2, and none of the buildings are multistorey.	Custom % Growth Forecast Enabled	False	
UrbTwn LD 9I_10h	Income 26500 - 65500. Normally very highdensity in complexes that incorporate security. Dwellings may be single or multi-storey, with total (liv	Fixed % Growth Enabled	False	
UrbTwn MD 71_8h	Income 11600 - 19116. Normally high-density, in complexes that incorporate security or other shared facilities. Dwellings may be single or mult	Fixed Increment Forecast Enabled	False	
UrbEst LD 10h+	Income 65000 - 100000. Dwellings are mostly multi-storey, brick or concrete, having floor areas in the region of 300-500m2 in regions with sor			
RurRes LD 1_2	Income 0 - 1800. Mixture of modem (matchbox and RDP) and traditional costruction methods			
UrbRes LD 71_7h	Income 7800 - 11600. Typical dwellings range in size from 80-170m2. Most of such houses generally have some visible repair/maintenance n			
UrbRes HD 8I_9I	Income 11600 - 24500. Built floor-area of main dwellings is around 190 m2, and none of the buildings are multistorey. 🗈 Low RurRes 1_2			
UrbRes LD 8I_9I	Income 11600 - 24500. Built floor-area of main dwellings is around 190 m2, and none of the buildings are multistorey.	🗖 Likely	RurRes 1_2	
Township 5 6	Income 3200 - 7800. Consist of low-income flats at the bottom end of the scale to old township houses and newer government schemes	Profile	RurRes 1_2	
UrbRes MD 71 7h	Income 7800 - 11600. Typical dwellings range in size from 80-170m2. Most of such houses generally have some visible repair/maintenance n 🖽 High RurRe			
UrbTwn HD 9I 10h	Income 26500 - 65500. Normally very high-density in complexes that incorporate security. Dwellings may be single or multi-storey, with total (iv			
UrbTwn LD 71 8h	Income 11600 - 19116. Normally high-density, in complexes that incorporate security or other shared facilities. Dwellings may be single or mult			
UrbTwn MD 9I 10h	Income 26500 - 65500. Normally very high-density in complexes that incorporate security. Dwellings may be single or multi-storey, with total (iiv Likely RurRes 1_2 (Customer); 0.41			
	income zobor obbot. Normally very nighteersity in complexes that incomplexes security. Dwellings may be single or main solely, with total (v)	High	RurRes 1_2 (Customer); 0.41	
RurRes 1_2, Sumn	ner Weekday	Likely Profile settings for scenario Likely		

ОК

15:00

17:00

19:00

21:00

23:00

2. Forecasting Green Fields and Built Up Areas

Powering :

GLF Forecasting Process

Existing Land Use related information; Statistics, etc.	Status Quo Modelling			
	Model the as-	Forecast		
	is land-use	Forecast the land use change	Network Loading	
			Get the meter	Start Planning
		(vacant land)	readings and assign base load	Introduce network reinforcement plans if needed and evaluate options

Existing Land Use

MANYANE

all all a

Assigning The Subclass

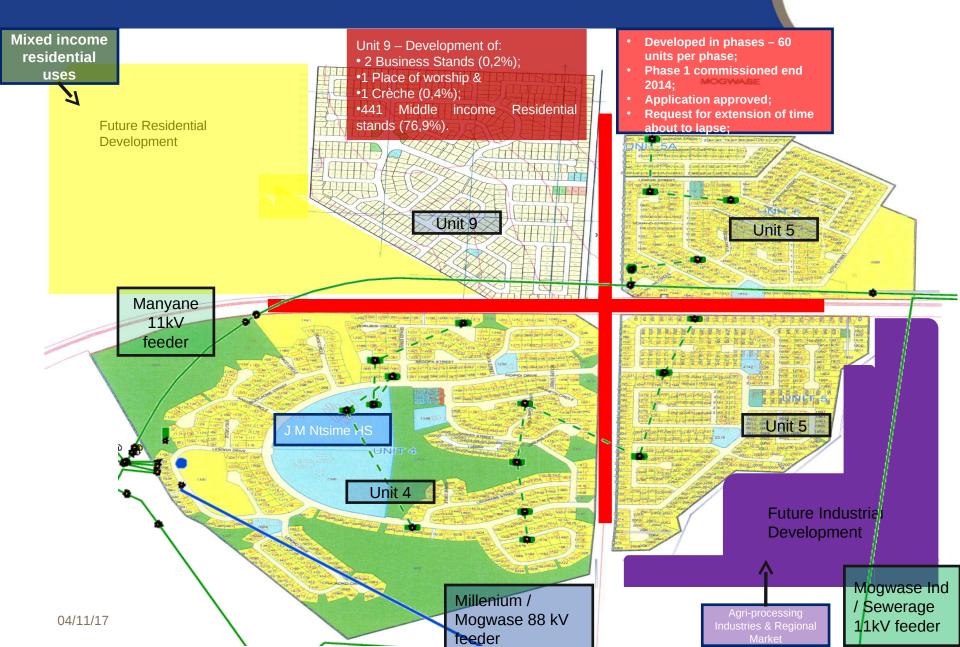
UrbRes MD 8_9

Urban residential dwellings (larger houses, "white collar"), at medium density.

Customer Characteristics		
AMPS LSM Class	LSM 8(low) – LSM9(Low)	
Income Range	11,600 to 24,500	
Derivation of Income	Derived from formal employment in cities, mostly in white-collar capacity.	
Description of Dwellings	Built floor-area of main dwellings is around 190 m ² , and none of the buildings are multi-storey.	
Type of Roads	All tarred.	
Water Reticulation	Piped water is supplied into all houses, all of which have electric hot- water geysers.	

Load Characteristics				
Load Profile	Load factor = 0.41 (Year 7)			
Load Growth	Growth-curve name Curve type Saturation		on	
			Admd	kWh
	UrbRes 8_9 (customer)	Per connection	2.88	864
	UrbRes 8_9 (S-curve Prj Yrs:3)	Per Ha	50.5	
	UrbRes 8_9 (S-curve Prj Yrs:7)	Per Ha	50.5	
	UrbRes 8_9 (S-curve Prj Yrs:10)	Per Ha	50.5	

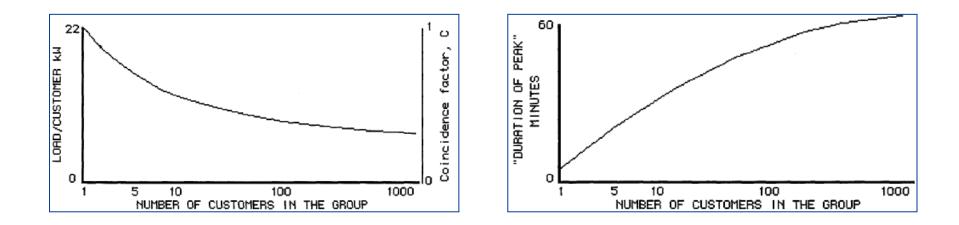
Development Application


all all a

1 8- 55.00

Local Development Overview

Subclass validation



- Feeder Load (recorded) = 5.2MVA
- Built up area = 111ha
- Load density = 47kVA/ha
- One can workout the feeder load provided that the load zone (subclass) is modelled accurately and the area size is known:
 - Area = 111ha;
 - Load Density = 50.8kVA/ha (from the subclass)
 - Maximum Demand = 5.6MVA (Area*Load Density)
- Factors affecting the difference between measured and calculated MD ("Max Ratio"):
 - Losses (kW) need to be quantified.
 - The Area (111ha) represents the built up land. At high spatial resolution, this number will be reduced.
 - Data percentile: what was applied on the stats meter <u>vs.</u> subclass.

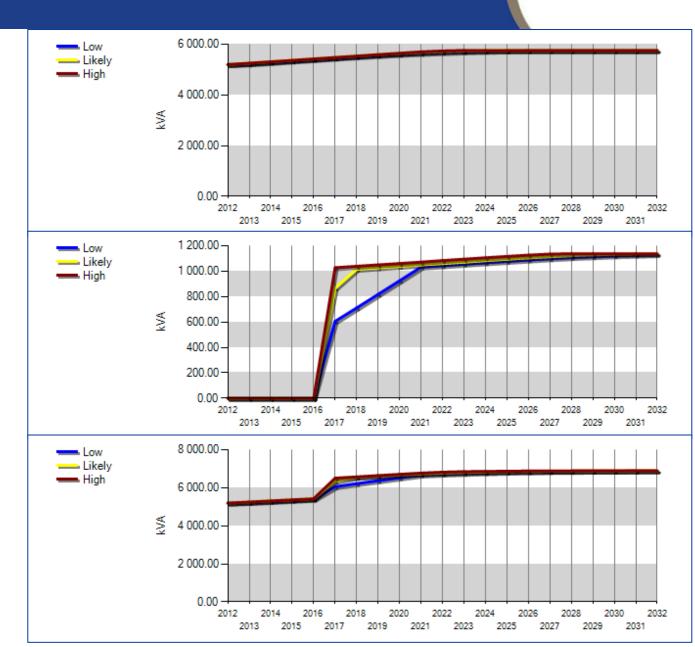
Subclass validation (continued)

- Factors affecting the difference between measured and calculated MD ("Max Ratio"):
 - Ageing subclasses.
 - The ADMD is not a "fixed" value, in that, it decreases as the number of house holds increases.

Eskom

Forecast Results

The Built Up Area: Unit 4 and 5 **Notes**:


The area is built up and has been zoned for medium density and there is no further densification forecasted. The growth is based on possible increase in kW/capita

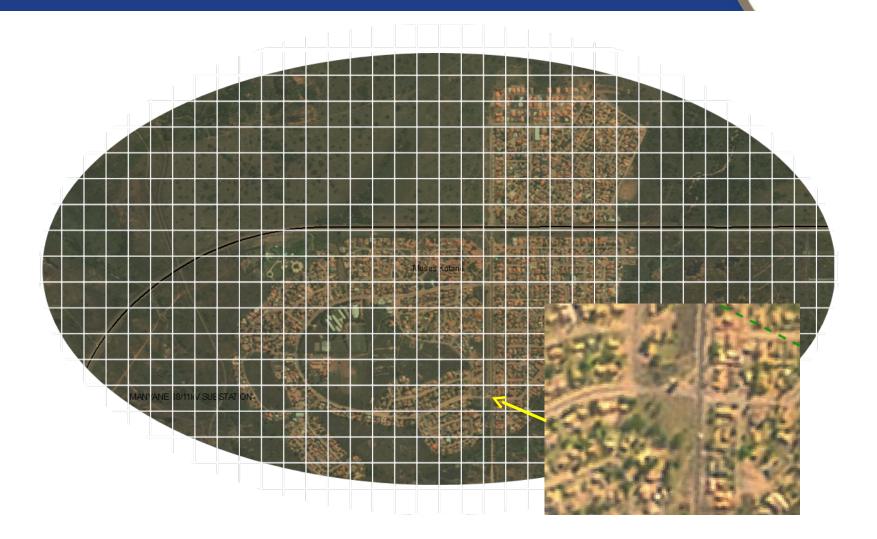
The Forecasted Area: Unit 9 **Notes**:

In nature, this forecasted area will be similar to the existing. The sharp growth is due to people moving in to this area.

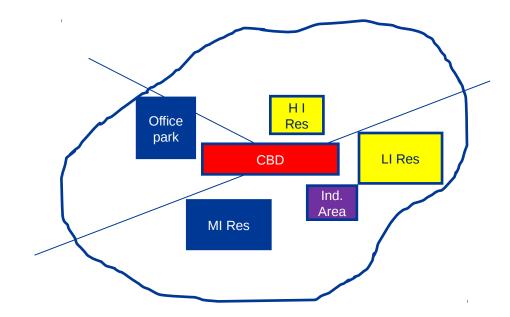
Total Feeder Area: Uni 4, 5 and 9 **Notes**:

Based on all that has been explained, the supply feeder is forecasted to grow as shown.

Uniform Grid Method

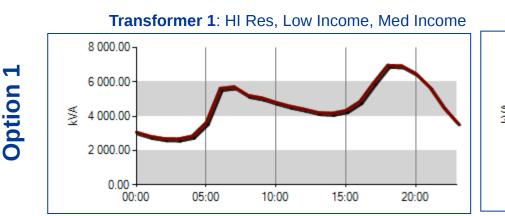


Uniform Grid Method

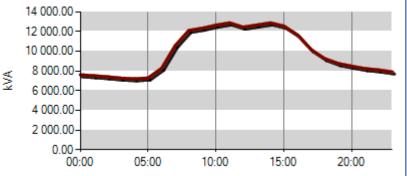


3. Mixing Load Profiles

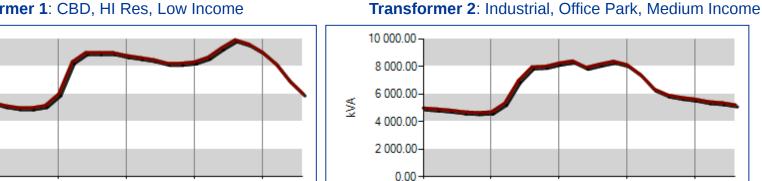
Load Mixing



Development	Peak Load (MVA)
CBD	5
Industrial	5
Low Income Res	3
Med Income Res	3
Office Park	4
High Income Res	4
Total (undiversified)	24


Two transformers have been made available to supply the town and its surroundings. The apparatus are both rated 10MVA each.

Supply Options and Resultant Profiles



Transformer 2: Industrial, Office Park, CBD

Eskom

Transformer 1: CBD, HI Res, Low Income

00:00

05:00

10:00

15:00

20:00

Option 2

04/11/17

10 000.00

8 000.00-

6 000.00

4 000.00-

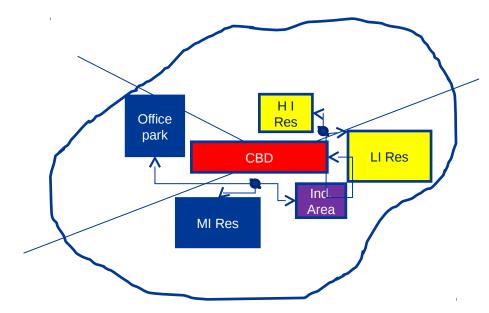
2 000.00

0.00-

00:00

05:00

10:00


15:00

k∨A

20:00

Supply Options

Development	Peak Load (MVA)
CBD	5
Industrial	5
Low Income Res	3
Med Income Res	3
Office Park	4
High Income Res	4
Total (undiversified)	24

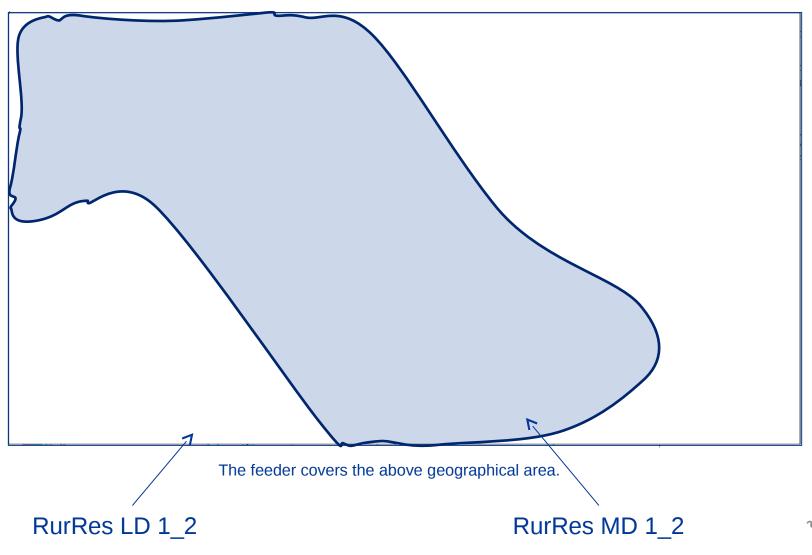
DISCUSSION

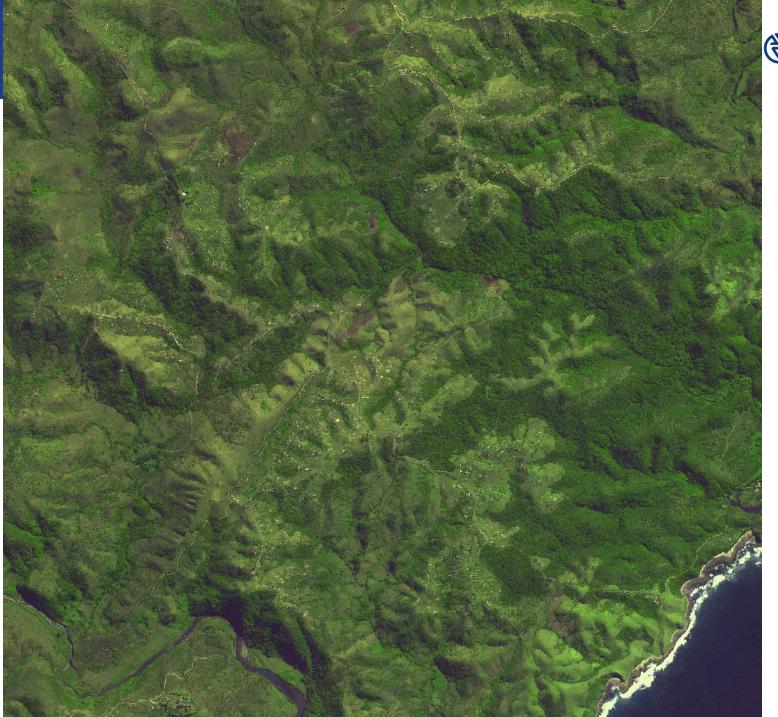
•Option 2 combination provides adequate capacity but transformer Overrating chances are minimised due to high load factor.

•Other issues such as line route and substation site selection need to be considered when attempting the load mix exercise.

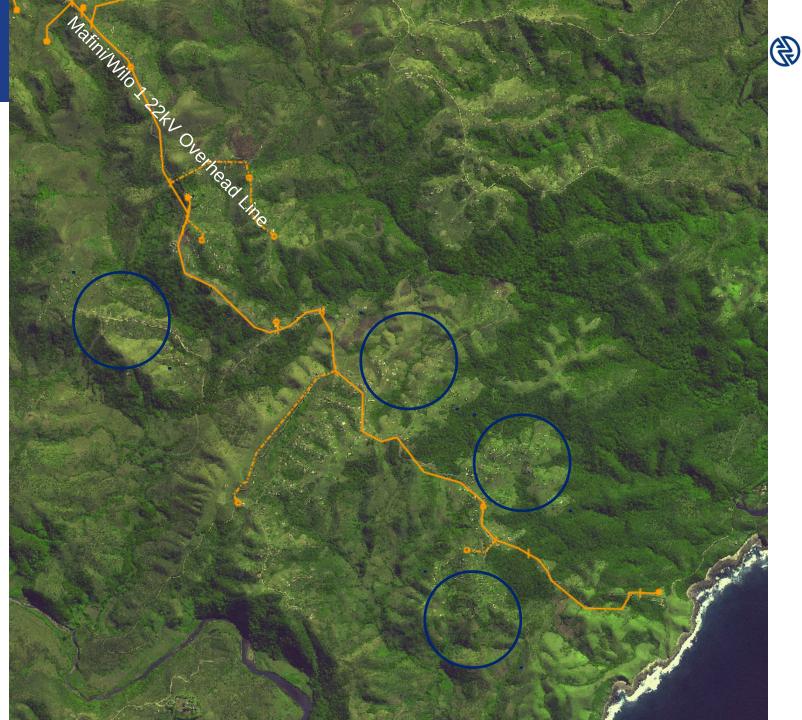
•The alternative of putting both transformers in one substation may also be evaluated (This would lead to a favourable high level of load diversity, and therefore more capacity). This scenario gives a total peak of **16MVA.**

•Reliability and power quality issues need to be understood before the plan is finalised.




4. Potential Demand Perspecti

Feeder Area



DESCRIBING THE SITUATION



DESCRIBING THE SITUATION

Measured and Potential Load

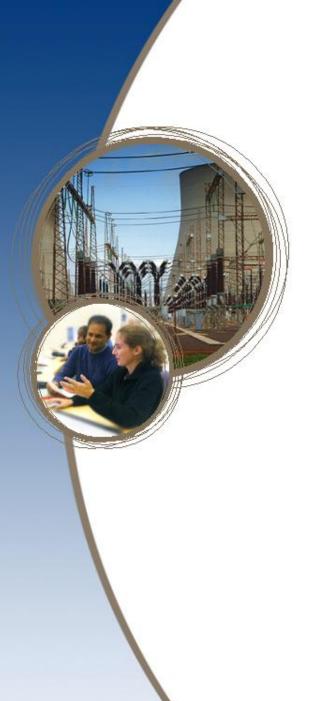
Quantification of the Potential Load on the Ground.

- It shows the difference between what is supplied and what is not supplied.
- As soon as the infrastructure (feeder) is erected, this is the amount of load it will experience (Delta + Measured).
- During financial constraints, care must be taken to ensure that infrastructure rollout is prioritised. The size of the delta can be used as one of the indications/variables when performing prioritisation.
- The delta shows the MVA "backlog" of the area being studied.
- It can be used to calculate the "Energy Not Supplied" and the "Cost of Unsupplied Energy" that would be more significant to commercial/industrial customers.
- Cost to Customer = f {forecast, subclass}

5. Conclusion

Conclusion

- Proper load sub-classification leads to optimum planning, and inaccurate modelling/assigning of subclass may lead to inaccurate infrastructure plan.
- Load subclasses do change with both time and location hence subclass regionalization and time-based maintenance framework.
- Load types (load factors) can be mixed and manipulated to save on infrastructure expansion expenditure. This can be carried out on existing and/or future infrastructure by the planner.
- The Potential Demand can be used for project prioritisation.
- As it has been mentioned that the small area forecast dates back to the 1950's, in the current century (21st), researchers need to look at process automation, integration, processor speed and accuracy improvements.
- Load behaviour understanding is important for capacity planning, reliability planning, electrification planning, economic evaluation of infrastructure plans, and also operators and designers.
- The ADMD needs to be assigned according to the LSM and the number of customers not a "blanket" value.



Areas for possible improvement

- Training of planners: Using subclasses can be a tricky exercise...
- Automated Subclass Identification Mechanism: One can easily get the subclass wrong, thereby modelling the load type incorrectly. This can compromise the forecast accuracy...
- Load profile mixing: there is a need to develop a script that will perform this task as it can be a long trial and error, when manually performed.
- Input information: like any other computer program, PowerGLF forecast is as good as the input information. Input information is important.

Eskom

Thank you

