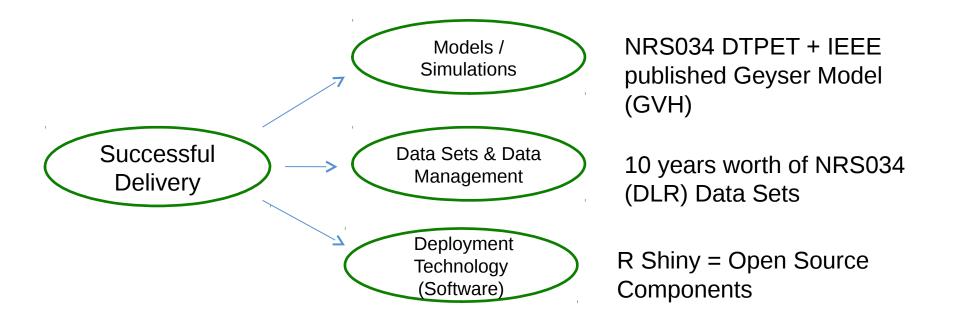
www.enerweb.co.za | www.eoh.co.za |


## Hot Water Modelling using DLR inputs

KILOWATTHOURS

November 2014









## Objective

Combine the outputs of NRS-034 (DTPET), with a hot water simulation program, to be able to determine the effects of TOU switched Smart-Meters, given a specific population type

## **Business Application**

Ability to perform simulations for scenarios for which there is no data – link together previously established models from different sources (e.g. IEEE, NRS034) models

### **Milestones**

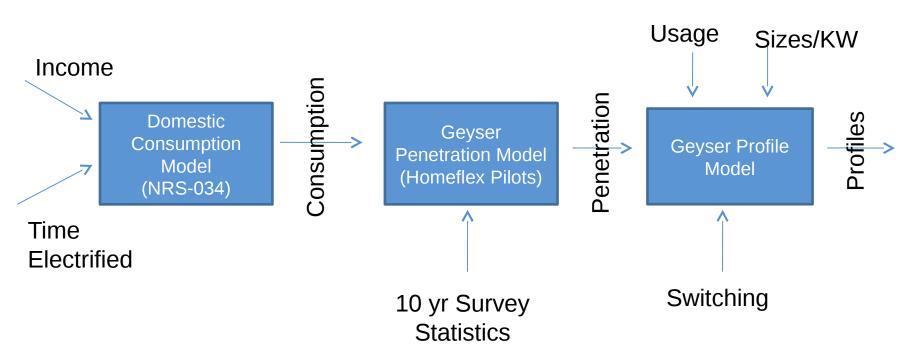
- 1. Implement NRS034 DTPET
- 2. Implement Geyser Penetration
- 3. Implement Geyser Simulator

## Data Sources

NRS034 Data collected over past 10 years Hot water consumption patterns obtained from Instant Water Heater pilot study Table-View

## Methodology

Use NRS-034 DtPet Model to obtain consumption, for the year of interest


Use Penetration model to determine the ratio of single/double geyser installations

Use histograms from measurements, as source to generate hot water consumption events, for single, double and family dwellings

Use environmental factors, including tariff based switching, via a physical based model for a geyser (simple lumped parameter model, single order D.E)

Derive element switching patterns

## Models / Simulations



Final model is a combination of 3 previously developed/published models, 2 from the NRS-034 industry collaboration, and 1 from a IEEE published PhD paper.



NRS-034 is an industry collaboration, with participants from all electrical industry sectors, and is a guideline for electrical network decision

This collaboration has been collecting domestic load research data (metering and survey statistics), for the past 10 years, and publishes its finding from time to time, being available to all industry

NRS034 data sets were used ostensibly to derive the DTPET model (see previous) presentations, as well as the geyser penetration model

The hot-water consumption statistics were obtained from an instant water heater pilot study conducted in Table View

## Technology Delivery Platform R-Shiny



R is data analysis software used by data scientists, statisticians, analysts, and quants

R is used by those who need to make sense of data using analysis, data visualization, and predictive modelling.

R is a programming language, a complete, interactive, object-oriented language: designed by statisticians, for statisticians.

R is an environment for statistical analysis, data-management, simulation and interactive visualisation

Shiny is a rapid, web application delivery framework, delivered as a R package

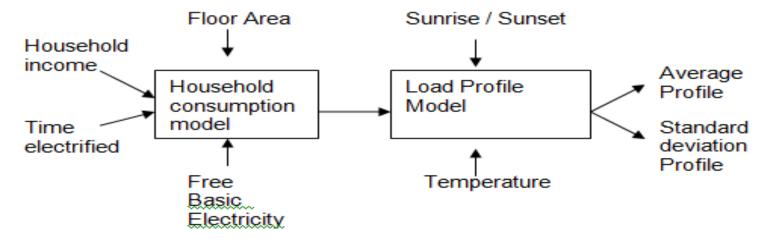
Shiny natively utilises CSS and JS, and thus instantly deploys Highcharts, D3 which are current some of the most popular and powerful interactive visualisation libraries

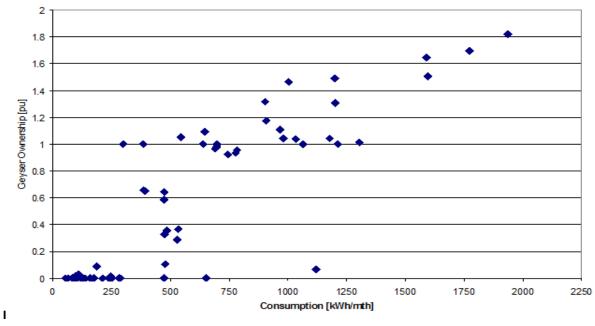


## MODELS USED

7

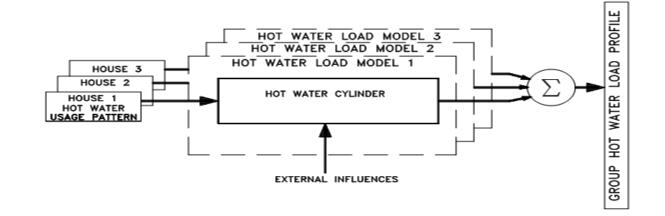






Figure 1: Structure of the load profile model

## Model 2: Geyser Penetration




Data collected by the NRS LR project was queried to estimate the penetration of hot water geysers in communities with different levels of consumption.

The figure below illustrates findings from data collected over period of 10 years. Each point represents aggregate measures from groups of 60 or more households.



## Model 3 : Geyser Simulations

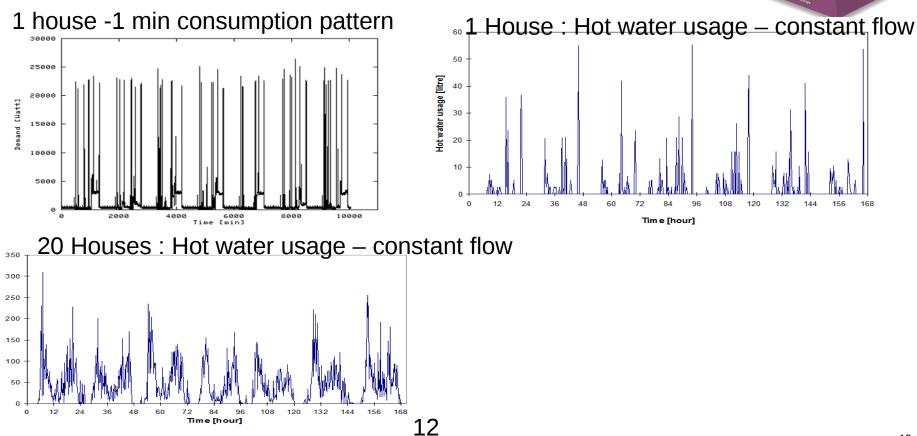




$$MC\frac{dT}{dt} = g(t)Q_e - HA[T - Ta(t)] - \dot{m(t)}C[T - Ti(t)]$$

Lumped parameter differential equation

$$T_{K+1} = \frac{\Delta t}{MC} \left\{ g_K Q_e - HA \left[ T_K - Ta_K \right] - \dot{m_K} C \left[ T_K - Ti_K \right] \right\} + T_K$$


Numerical difference equation that can be solved by stepping through time

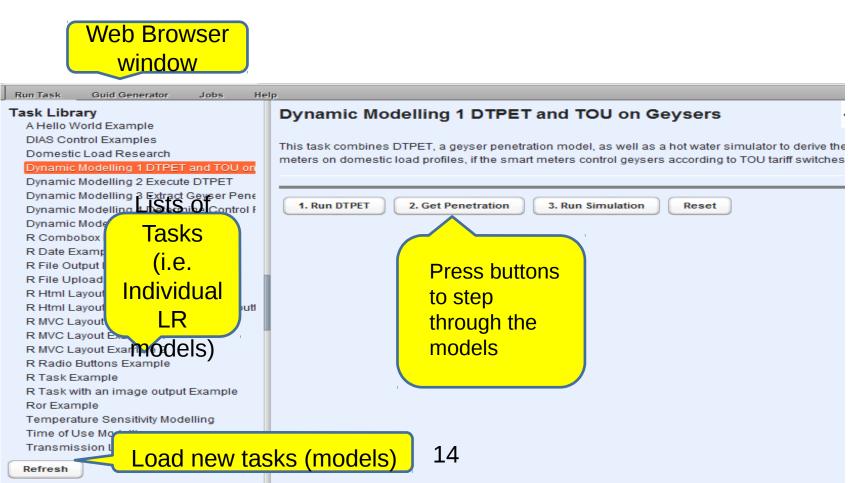


# DATA MANAGEMENT

## Data Sets

Hot water usage [litre/15 minutes]




Hcompany



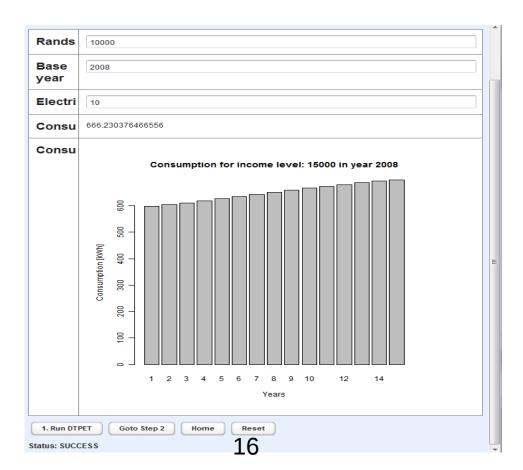
# MODEL DELIVERY

## **Technology Delivery Platform**








#### Dynamic Modelling 2 Execute DTPET

This task allows the consumption of a group of customers to be determined, given their average monthly household income, and the time they have been electrified

| Rands                               | 10000 |  |  |  |  |  |
|-------------------------------------|-------|--|--|--|--|--|
| Base year                           | 2008  |  |  |  |  |  |
| Electrified                         | 10    |  |  |  |  |  |
| Consumption                         |       |  |  |  |  |  |
| ConsumptionPlot                     |       |  |  |  |  |  |
| 1. Run DTPET Goto Step 2 Home Reset |       |  |  |  |  |  |

Fill in parameters in order to derive aggregate monthly consumption, per house Press "1. Run DTPET" button, to execute model



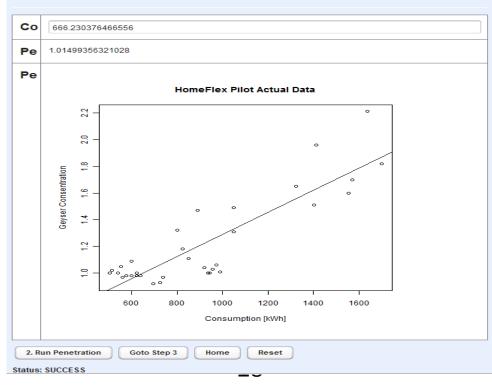


Note that Consumption calculated, now press "Goto Step 2" to proceed to next part of the model

#### **Dynamic Modelling 3 Extract Geyser Penetration**

This task allows uses practical measurements and survey questionnaires, from the Eskom Homeflex pilots, to obtain a relationship between monthly consumptions, and number of geysers installed in a particular home. This model froms the bridge between the DTPET model, and the Geyser Profile Simulator

| Consumption                               | 666.230376466556 |  |  |  |  |
|-------------------------------------------|------------------|--|--|--|--|
| Penetration                               |                  |  |  |  |  |
| PenetrationPlot                           |                  |  |  |  |  |
| 2. Run Penetration Goto Step 3 Home Reset |                  |  |  |  |  |


Having obtained the Consumption, now press "2. Run Penetration", to execute the 2<sup>nd</sup> part of the model

## **Obtain Geyser Penetration**



#### **Dynamic Modelling 3 Extract Geyser Penetration**

This task allows uses practical measurements and survey questionnaires, from the Eskom Homeflex pilots, to obtain a relationship between monthly consumptions, and number of geysers installed in a particular home. This model froms the bridge between the DTPET model, and the Geyser Profile Simulator



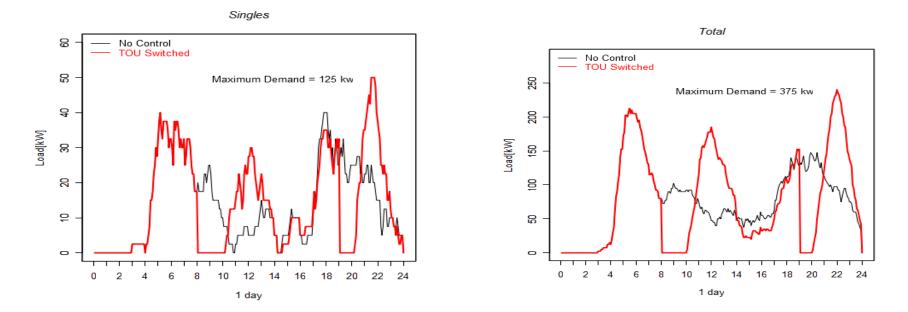
A linear model is fitted to the data, and the Penetration factor is obtained for the specified Consumption

| A         |    | В          | С    | D       | E      | F                                                                                    | G                   | Н          |             | J               | К    |            | L    | M    | 1        |         | N   |          | C    |
|-----------|----|------------|------|---------|--------|--------------------------------------------------------------------------------------|---------------------|------------|-------------|-----------------|------|------------|------|------|----------|---------|-----|----------|------|
| HR        |    | OU Control | Bigs | Mediums |        | Bigs                                                                                 | Mediums             |            | Bigs        | Mediums         |      |            | 0.14 |      | <b>F</b> |         |     |          | Diet |
|           | 0  | 1          | 0.01 | 0.01    | 0.01   | 0.02                                                                                 | 0.02                | 0.02       | 0.02        | 0.02            | 0.02 |            | 0.12 |      | Fr       | eq      | uen | сү       | Plot |
|           | 1  | 1          | 0.01 | 0.02    | 0.02   | 0.02                                                                                 | 0.02                | 0.02       | 0.02        | 0.02            | 0.02 |            |      |      |          |         |     |          |      |
|           | 2  | 1          | 0.01 | 0.02    | 0.02   | 0.02                                                                                 | 0.02                | 0.05       | 0.02        | 0.02            | 0.05 |            | 0.10 | +    |          |         |     |          |      |
|           | 3  | 1          | 0.02 | 0.02    | 0.04   | 0.04                                                                                 | 0.02                | 0.05       | 0.04        | 0.02            | 0.05 | Cases      | 0.08 | -    |          |         |     |          | _    |
|           | 4  | 1          | 0.04 | 0.07    | 0.04   | 0.09                                                                                 | 0.08                | 0.05       | 0.09        | 0.05            | 0.05 | g          | 0.06 |      |          |         |     |          |      |
|           | 5  | 1          | 0.13 | 0.09    | 0.05   | 0.15                                                                                 | 0.08                | 0.05       | 0.15        | 0.06            | 0.05 | <b>%</b>   |      |      |          |         |     |          |      |
|           | 6  | 1          | 0.13 | 0.09    | 0.05   | 0.11                                                                                 | 0.08                | 0.05       | 0.11        | 0.06            | 0.05 |            | 0.04 | +    |          |         | ╉╋  |          | ╉┲   |
|           | 7  | 0          | 0.13 | 0.07    | 0.05   | 0.08                                                                                 | 0.03                | 0.05       | 0.08        | 0.03            | 0.05 |            | 0.02 |      |          |         |     |          |      |
|           | 8  | 0          | 0.08 | 0.07    | 0.05   | 0.05                                                                                 | 0.03                | 0.05       | 0.05        | 0.03            | 0.05 |            |      |      | _        |         |     |          |      |
|           | 9  | 0          | 0.04 | 0.03    | 0.04   | 0.01                                                                                 | 0.05                | 0.05       | 0.01        | 0.05            | 0.05 |            | 0.00 | +    |          | · · · · |     |          |      |
|           | 10 | 1          | 0,01 | 0.02    | 0.04   | 0.01                                                                                 | 0.05                | 0.05       | 0.01        | 0.05            | 0.05 |            |      | 0 1  | 2 3      | 4       | 56  | 7        | 8 9  |
|           | 11 | 1          | 0.   |         |        |                                                                                      |                     |            |             |                 |      |            |      |      |          |         |     |          |      |
|           | 12 | 1          | 0.   | Mult    | inla   | nhv                                                                                  | cical               | con        | otar        | nto ni          |      |            |      |      |          |         |     |          |      |
|           | 13 | 1          | 0.   | IVIUIL  |        |                                                                                      | Silai               |            | Slai        | iis ai          |      |            | 0.10 |      | Fr       | ea      | uen | ιcv      | Plot |
|           | 14 | 1          | 0.   |         | -      |                                                                                      |                     |            |             |                 |      |            | 0.09 | +    |          | _       |     |          |      |
|           | 15 | 1          | 0.   |         | . :    | <b>-</b> -                                                                           |                     | - L L      |             | vithir          | _    |            | 0.08 | +    |          |         |     | <u> </u> |      |
|           | 16 | 1          | 0.   | _ eag   | SIIV   | וזחחי                                                                                | aure                | n tra      | ע מר        | vitnir          | ן ר  | 8          | 0.07 | +    |          |         |     |          |      |
|           | 17 | 1          | 0.   | Cul     | JILY V | 501 m                                                                                | guic                |            |             | VICIIII         | •    | % of Cases | 0.06 | -    |          |         |     |          |      |
|           | 18 | 0          | 0.   |         | -      |                                                                                      | -                   | _          |             |                 |      | ž          | 0.05 |      |          |         |     |          |      |
|           | 19 | 0          | 0.   |         |        |                                                                                      | Exc                 |            |             |                 |      | ~          | 0.03 |      |          |         | _   |          |      |
|           | 20 | 1          | 0.   |         |        |                                                                                      | EXU                 | 21         |             |                 |      |            | 0.02 |      |          |         | _   |          |      |
|           | 21 | 1          | 0.   |         |        |                                                                                      |                     |            |             |                 |      |            | 0.01 | +    | _        |         | _   | ┢┻╋      | _    |
|           | 22 | 1          | 0.02 | 0.03    | 0.03   | 0.02                                                                                 | 0.03                | 0.02       | 0.02        | 0.03            | 0.02 |            | 0.00 | ┽┻┰┻ |          | ┻┰┻┙    |     |          |      |
|           | 23 | 1          | 0.02 | 0.02    | 0.02   | 0.02                                                                                 | 0.03                | 0.02       | 0.02        | 0.03            | 0.02 |            |      | 0 1  | 2 3      | 34      | 5 6 | 57       | 89   |
| Totals    |    |            | 1.01 | 1.00    | 1.00   | 1.00                                                                                 | 1.02                | 1.00       | 1.00        | 0 1.00          | 1.00 |            |      |      |          |         |     |          |      |
|           |    |            |      |         |        |                                                                                      |                     |            |             |                 |      |            |      |      |          |         |     |          |      |
| M         |    | 150        | 200  |         |        | Size of T                                                                            |                     |            |             |                 |      |            | 0.05 |      | F        | rea     | uer | ncv      | Plo  |
| Element   |    | 2500       | 2500 |         |        | Save size of the heater elements, for these households                               |                     |            |             |                 |      |            |      |      |          |         |     | ,        |      |
| Tambient  |    | 15         | 15   |         |        |                                                                                      | (air) tempe         |            | iring the s | imulation       |      |            | 0.04 | 1    |          |         |     |          |      |
| Tinput    |    | 5          | 5    |         |        |                                                                                      | et tempera          |            |             |                 |      | Cases      | 0.03 |      | _        |         | /   |          |      |
| Hlosses   |    | 1          | 1.25 |         |        | Losses coefficient, obtained from manufacturer, for cylinde                          |                     |            |             |                 |      |            |      |      |          |         |     |          |      |
| SwitchHi  |    | 65         | 62   |         |        | High temperature, switch off point, of the thermostat                                |                     |            |             |                 |      |            | 0.02 |      |          |         |     |          |      |
| SwitchLo  |    | 55         | 52   | 50      |        | Low Temperature, switch on point, of the thermostat<br>Calculated total, do not edit |                     |            |             |                 |      |            | 0.01 |      |          |         |     |          |      |
| No of 2's |    | 0          | 0    | 0       |        | Calculate                                                                            | ed total, do        | notedit    |             |                 |      |            |      |      |          |         |     |          |      |
|           |    |            |      |         |        |                                                                                      |                     |            |             |                 |      |            | 0.00 | +    |          |         |     |          |      |
| Houses    |    | 100        | 200  |         |        | Total nur                                                                            | nb <b>leO</b> pfhou | uses to si | mulate in   | each grou<br>ds | p    |            |      | 0 1  | 2 3      | 34      | 5 ( | 67       | 8 9  |
| dT        |    | 300        | 300  | 300     |        | Time inc                                                                             | rement of s         | imulation  | in secon    | ds              |      |            |      |      |          |         |     |          |      |
|           |    |            |      |         |        |                                                                                      |                     |            |             |                 |      |            |      |      |          |         |     |          |      |



#### **Dynamic Modelling 4 Determine Control Profiles**

This task allows multiple parameters to be set, to investiage up to 3 groupts of hot water cylinder users, and generates the electrical consumption patterns, for up to 1000 homes in each, depending on water usage patterns, size of elements, thermostat settings, and ambient and inlet temperatures. all variables are controlled from an excel file. <P>The excel file must be available at c:\temp\hotwater.xls

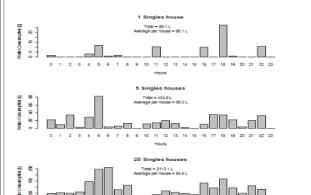

| Penetration                  | 1.01499356321028 |  |  |  |  |
|------------------------------|------------------|--|--|--|--|
| StatsHtml                    |                  |  |  |  |  |
| WaterPlot                    |                  |  |  |  |  |
| SinglesPlot                  |                  |  |  |  |  |
| DoublesPlot                  |                  |  |  |  |  |
| FamiliesPlot                 |                  |  |  |  |  |
| TotalsPlot                   |                  |  |  |  |  |
| DiffPlot                     |                  |  |  |  |  |
| MeasurePlot                  |                  |  |  |  |  |
| 3. Run Simulation Home Reset |                  |  |  |  |  |

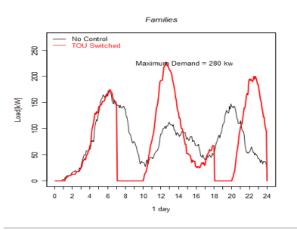
After having obtained the Penetration, and all the physical constants from Excel, the simulation is ready to run.

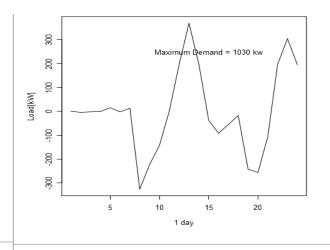
Start the simulation by pressing "3. Run Simulation"

## **Geyser Load Profiles**







Hot water cylinder ADMD, of +/- 30-40% of installed capacity, as shown by simulations, confirmed by various practical measurements (e.g. Various Notch tests, TOU studies)

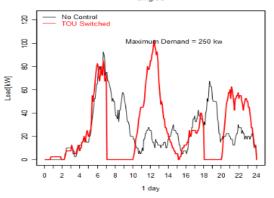

## **Results from Profile Simulator**

13 14 15 16 17 18 19 20 21 22 23

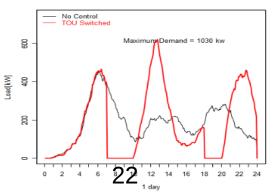






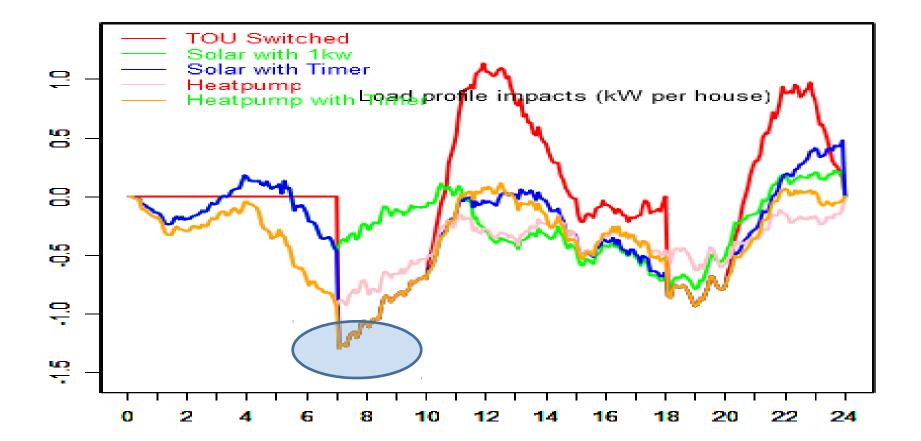



Singles


10 11 12

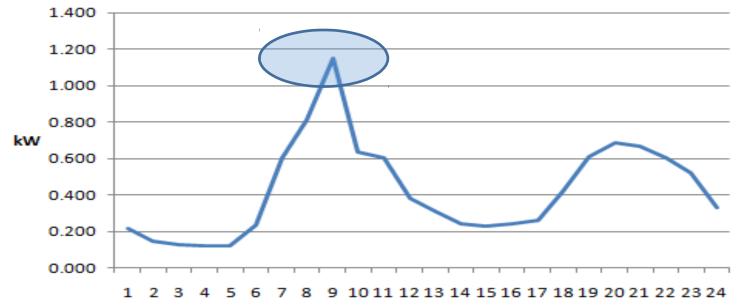
Hours

0 1 2 3 4 5 6 7 8 9



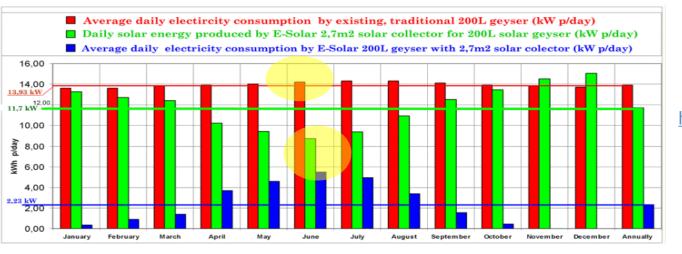

Total



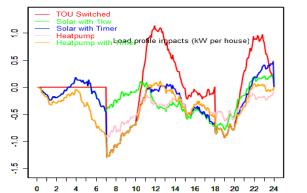


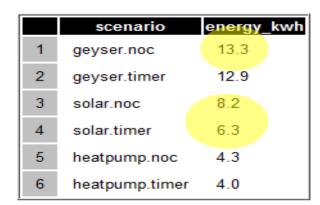





## ADMD of Hot Water



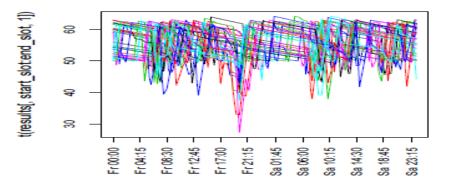


## C. Good correlation with practical measurements





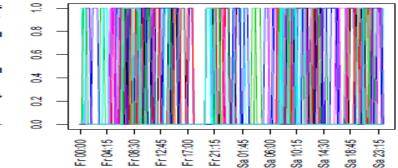
#### http://www.easysolar.co.za





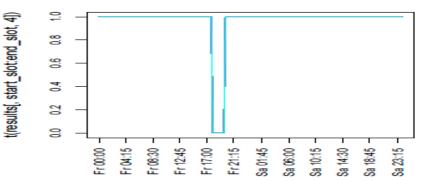



- Simulation : actual measured hot water usage patterns, 35 houses, 15 minute intervals
- 3 weather periods were used, summer, winter and in-between (in terms of ambient temperatures and inlet water temperatures)
- Houses with an average daily usage of greater than 200L, were assumed to have 200L geysers, the rest had 150L geysers
- A evening peak TOU control function was used to override element power, thus not allowing any heating between 18h00 and 20h00
- Results showing average tank temperatures, flows, element switches and the control function
- A cold water event was triggered when the average tank temperature fell below 30 degC, at ANY time during a daily 24 hour period
- When one or more cold events on a day is detected, that day is flagged as a cold event day for that particular house

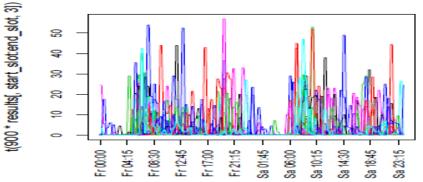

## Application 1 – Determine Cold Event Days






Temperatures

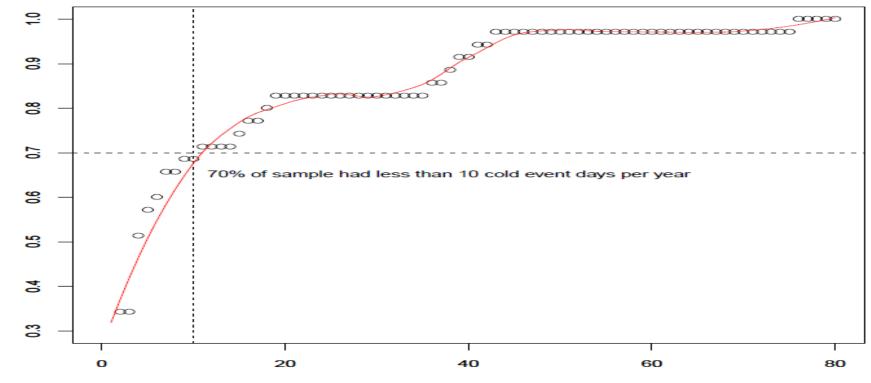
#### Thermostats with Evening Control Only




# t(results[, start\_slot:end\_slot, 2])

#### Timer Control Function




Usage (flow)



27



#### **Cumulative Density of Cold Days**



Days with cold

۷۷

Percentage



- Provide Data Inputs for Potential Applications
  - Cost/Tariff impact modeling
  - Local/Global Network impact modeling
  - Spatial Impact Modeling (different areas / weathers effects)
  - Technology interaction modeling (e.g. timer & solar)
  - Hot water control algorithm design (different goals)
  - Comfort Impact Modeling
- Basic simulator can in future be extended to deliver business applications as above
- Basic simulator toolbox can also be extended into additional models (pumps, lighting, cooling etc)



NRS034 and IEEE Models, together with NRS034 Data was combined for this paper, to deliver a simulator which can estimate Geyser control profiles, via bottom-up simulation

It is proposed that NRS034 also consider utilising this same, open-source (free) platform (R Shiny) for deployment of its data-sets and models

30



