Quantifying Uncertainty in Baseline Projections of CO₂ Emissions for South Africa

Activity 3 Report: Improvements made to SATIM for Monte Carlo Simulation

December 2014

ENERGY RESEARCH CENTRE University of Cape Town

ERC

Facilitating Implementation and Readiness for Mitigation

Introduction

Two main modifications were made to the existing South African TIMES Model (SATIM) to be able to handle Monte Carlo Simulations:

- Monte Carlo Framework development
- Reduction of Model size

Monte Carlo Framework

A Monte Carlo framework was developed around the SATIM model to handle multiple simulations. The framework was developed in the GAMS language, the same language that the TIMES model is developed in. Monte Carlo Simulations involves running the model several hundred times each time with a different coherent set of assumptions, drawn from distributions established for each of the uncertain parameters. The distributions were either established via expert elicitation or from literature. At this stage, these samples were generated either in R or in excel or obtained directly from providers of sample data (e.g. population, oil price, etc.). The samples are all stored in an excel workbook. The samples are currently fixed in that results for simulation x will always contain the same data and so yield the same result.

The process that is repeated for each simulation can be summarised as follows:

- 1. Read in sample data for simulation x
- 2. Prepare input files for SATIM
- 3. Run SATIM
- 4. Extract relevant results from SATIM, process and store

The actual GAMS code that was written to do this is in the appendix.

Reduced Model Size

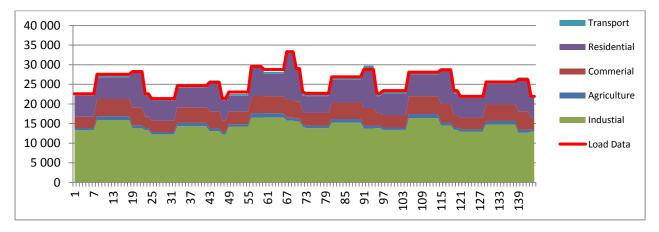

The South African TIMES model (SATIM) is a full sector optimisation model which represents the South African energy sectors and subsectors – both on demand and supply side. To represent a full year where energy demand changes during different periods of the year, 20 slices of time (timeslices) are used to categorise the year and the energy profiles of each sector. However, with higher levels of resolution (more timeslices) the computing demand increases exponentially and where numerous model runs are needed for analysis the computation time is large draw back. This is a comparison of a version of SATIM where 8 timeslices are used instead of 20 in order to improve on computing time.

Figure 1 shows the demand profile for electricity in MW for the shortened timeslice profile of SATIM. This is compared with the regular 20 timeslices of SATIM as shown in Figure 2.

 $35\ 000$ $30\ 000$ $25\ 000$ $20\ 000$ $15\ 000$ $15\ 000$ 0 $10\ 000$ 0 $10\ 000$ 0 $10\ 000$ 0 $10\ 000$

The SATIM model is run for a reference scenario (REF) for the model with 20 timeslices and the same scenario in the 8 time slice version (REF 8TS).

The power sector

The power sector new build is shown in Figure 3.

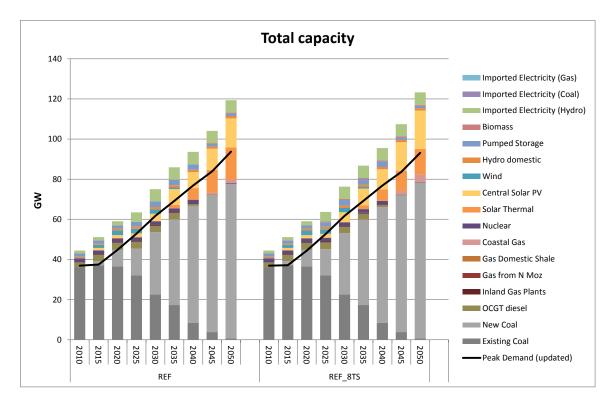


Figure 3: The new build capacities for the power sector for the regular profile SATIM and the version with shorter timeslices.

There are some minor differences between the two models. These differences are highlighted in Table 1 below.

	2010	2015	2020	2025	2030	2035	2040	2045	2050
Existing Coal									
New Coal			0.0	-0.2	-0.5	-0.3	-0.6	-0.1	0.6
OCGT diesel									
Inland Gas Plants								0.1	-0.1
Gas from N Moz									
Gas Domestic Shale									
Coastal Gas								0.8	2.0
Nuclear									
Solar Thermal								-1.2	-3.1
Central Solar PV				0.0	1.3	0.6	2.0	3.7	4.6
Wind									
Hydro domestic									
Pumped Storage									
Biomass				0.4	0.5	0.5	0.5	0.1	
Imported Electricity (Hydro)									
total	0	0	0	0.2	1.2	0.8	1.9	3.3	3.9
% of total capacity	0%	0%	-0.04%	0.29%	1.64%	0.91%	2.03%	3.19%	3.30%

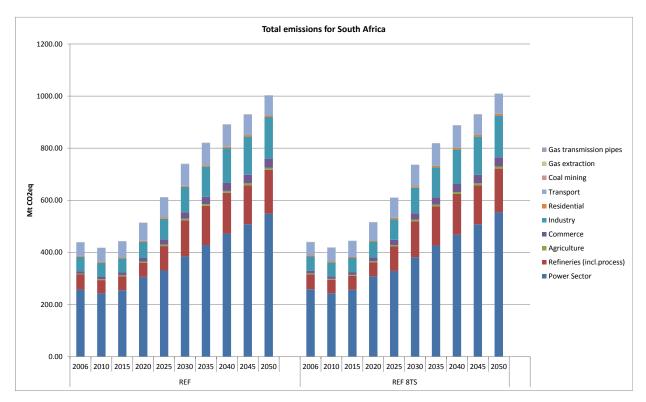

Table 1: The difference in total capacities (in GW) between the two versions of the SATIM model.

Table 2 shows the emissions from the power sector between the two models and highlights the very minute changes between the two versions of the model in terms of total emissions.

Table 2: The total power sector emissions in Mt CO2 eq.	. This includes the contributions of NOx and CH4
---	--

	2010	2015	2020	2025	2030	2035	2040	2045	2050
REF	242.5	254.3	305.9	330.5	384.8	428.3	472.3	508.1	548.7
REF 8TS	243.4	256.2	308.0	328.9	381.0	426.2	468.2	507.9	553.7
% difference	0.4%	0.7%	0.7%	-0.5%	-1.0%	-0.5%	-0.9%	0.0%	0.9%

The total model emissions for all sectors on both supply and demand are shown in Figure 4 and in Table 3 below.

Figure 4: The total emissions by sector for South Africa between the two models.

	2010	2015	2020	2025	2030	2035	2040	2045	2050
Power Sector	0.94	1.87	2.11	-1.58	-3.71	-2.12	-4.14	-0.15	5.05
Refineries (incl.process)					0.03	0.05	0.05	0.01	-0.11
Agriculture									
Commerce	0.09	-0.23	-0.34	0.01	0.06	0.11	0.19	0.19	0.42
Industry		-0.16	-0.22	-0.03	-0.04	-0.04	-0.04	-0.14	-0.02
Residential	0.09	-0.06	0.09	0.24	0.24	0.26	0.35	0.43	1.14
Transport						-0.01	-0.01	0.03	0.03
Coal mining									
Gas extraction									
Gas transmission pipes									
Total REF	418	443	515	612	740	821	892	930	1 003

Table 3: The total emissions difference between the two models (in Mt CO2eq)

Total REF 8TS	419	444	516	611	737	819	888	931	1 010	

Demand side

Overall the total final energy (all fuels) consumption is 0.05% less in the shorter timeslice model by 2030 and this is difference increases to 0.43% by 2050.

Tables 3 to 5 show the difference in fuel consumption patterns for the sectors which showed any change in fuel consumption. These changes analysed were only for those greater than 1% change.

Industry

Apart from 2010 industry has no major changes in fuel consumption. This may be partly attributed to the fact that industry has a much flatter demand profile than the other sectors and would thus be less impacted by a change in the time resolution of the model.

	2010	2030	2050
Coal			
Natural Gas			
Diesel			
Gasoline			
Kerosens/Paraffin			
LPG	38%		
HFO	-9%	3%	1%
Biomass&Waste	7%		
Electricity			

 Table 4: The total difference in % of fuels for the industrial sector.

Commercial sector

The largest changes in consumption for the commercial sector is in natural gas and gasoline (petrol). The change in gasoline largely comes from 'other' end uses in the commercial sector – these are mainly office equipment and large devices/technologies not included in other end uses or in other sectors – such as incinerators or large scale dryers etc. Gasoline makes up approximetly 1% of the commercial sector. The drop in kerosene is almost for the exact same reason as for gasoline.

Natural gas change however comes largely from the embedded trigeneration/cogeneration within the sector – about 670MW of cogeneration in the shorter timeslice model as opposed to about 290MW in the regular timeslice length model.

Table 5: The total difference in % of fuels used in the commercial sector.

	2010	2030	2050
Coal	4%		

Natural Gas	-6%	12%	102%
Diesel	4%	-23%	20%
Gasoline	5%	-6%	-63%
Kerosens/Paraffin	-11%	5%	-34%
LPG	-45%	-2%	10%
HFO		-4%	-2%
Electricity			

Residential sector

Table 6: The total % difference of fuels used in the residential sector.

	2010	2030	2050
Coal	9%		19%
Natural Gas		-14%	-14%
Diesel			
Gasoline			
Kerosens/Paraffin		27%	227%
LPG		2%	
HFO			
Biomass&Waste			1%
Electricity			3%

Discussion

The change in the year timeslice profile largely affects electricity demand profiles of each sector, with some sectors having a larger change than others.

In terms of the differences in the demand side sectors, the main changes occur in the commercial sector and the residential sector. The commercial sector has a representation of embedded generation in the form of cogeneration – gas engines producing electricity and exhaust heat being utilised to meet heating demands. The industrial sector has a largely flat profile, as opposed to residential which has a sharp peak, and has a very minor energy consumption changes between the model versions.

- Overall, the **demand sectors show minor changes** in energy consumption patterns (as well as overall energy consumption),
- the **power sector has very minor changes in build investment** plan to 2050, with less coal capacity, and more solar and gas power coming into the mix in the model version with less timeslices,
- Emissions differences between the models are very small on the order of about 1%, and
- The **time to compute** the model with shorter timeslices and for a model period of 5 year increments to 2050 was approximately **20seconds** as compared to the 2minutes and 30seconds for the same model with 20 timeslices.

In summary, the shorter timeslice model version of SATIM with just 8 timeslices to represent the year behaves very similarly to the same model run with 20 timeslices, but computes in about a seventh of the time.

Appendix: Monte Carlo GAMS code

*s=MCSimulation gdx=MCSimulation

SETS * Overall sets /1*1000/ simulations Х * SATIM sets REG ALLYEAR TIMES regions /REGION1/ TIMES regions All Years Active time periods in TIMES run TIMES first year TIMES second year TIMES other years T(ALLYEAR) T1 (ALLYEAR) T2 (ALLYEAR) TO (ALLYEAR) S PRC TIMES Processes TIMES Commodities COM TIMES Demand Commodities TIMES Demand Commodities for REGION1 DEM DEM1(COM) Fuel processes TIMES Fuel Processes TIMES coal processes TIMES coal for power TIMES coal for power central basin TIMES coal for power waterberg FUELP(PRC) FUELPC(PRC) FUELPCPWR (PRC) FUELPCPWR_CB (PRC) FUELPCPWR_A (PRC) FUELPG(PRC) FUELPO(PRC) TIMES gas processes TIMES oil liquid fuel processes * Power Plant processes TIMES power plant subsets TIMES power plants whose cost are MC simulated TIMES Coal Plants TECHS TECHC (PRC) ETC (PRC) ETCA (PRC) ETCA (PRC) ETG (PRC) TIMES Coal Plants waterberg TIMES Gas Plants TIMES Gas Plants TIMES Gas Plants Shale TIMES Nuclear Plants TIMES Hydro Plants TIMES PV techs Central TIMES PV techs Central TIMES PV techs Rooftop TIMES CSP techs TIMES Wind Plants ETGIH(PRC) ETN (PRC) ERH (PRC) ERSOLP(PRC) ERSOLPC (PRC) ERSOLPR (PRC) ERSOLT (PRC) ERW (PRC) ERB (PRC) TIMES Biomass Plants e-SAGE(cge) sets τu cge household groups INS cge household incomes FS XC cge sectors (for TIMES) cge scenarios TC (ALLYEAR) cge years * Emissions sets CO2SET (COM) Sectoral emissions * MC sim specific sets Linked subsectors ie excl com agr ele Other subsectors that are not linked ie com agr ele FS_L(FS) FS U(FS) Oil Price coefficient / a, b/ COEF ALIAS (ALLYEAR, AY), (ALLYEAR, TP); PARAMETERS *Overall Parameters XRATE(X,T) Real Exchange Rate R per \$ * Parameters imported from a base CGE run SFORE(FS,XC,TC) * Parameters imported from a base TIMES run COM_PROJ(REG,ALLYEAR,COM) Useful Energy Demand from TIMES COM_PROJ_BY(COM) Useful Energy Demand in the base year FUELPO_BY(PRC) Base year fuel prices for oil products TVACTELC(T,S) TVCOMBAL(T,COM) Electricity output of transmission Annual Marginals Electricity marginals TVCOMBALELC(T,S) * Monte Carlo Simulation parameters drawn in from Excel Monte Callo Sim * Main Drivers SIM_GDP_Y(X,AY) SIM_COM_S(X,T) GDP growth Share of commerce in GDP SIM_POP(X,T) Population * Data from Demand Model (spreadsheet-based at this stage) SIM_DEMX(COM,AY) Demand extracted from excel * Fuel Price Combined Data SIM_FUELP(PRC,X,T) Combined Fuel Price data * Technology Cost Combined Data SIM_TECHC(PRC,X,T) Comb Combined Tech overnight Cost data * Coal Mining Costs COAL_CV(PRC) Coal calorific value * Coal to Power Plants in Waterberg SIM_CLE_A(X,T) Coal from Coal from Existing Mines in Waterberg SIM_CLN_A(X,T) Coal from new Mines in Waterberg * Coal to Synthetic Fuels SIM_CLS(X,T) SIM_CLS_A(X,T) Coal from Existing Mines in Central Basin to synthetic fuels Coal from New Mines in the Waterberg to synthetic fuels * Metallurgical Coal existing Coal from Existing Mines supplying other industries SIM COA(X,T) * Global Commodity Prices Global Price for Coal in 2010 \$ per ton Global Price for Gas in 2010 \$ per Mbtu Global Price for Oil in 2010 \$ per barrel SIM_GCOAL(X,T) SIM_GGAS(X,T) SIM GOIL (X, T) * Oil products OCRFAC (FUELPO, COEF) Coefficients for mapping from oil to product prices * Natural Gas SIM_GIH(X,T) Shale Gas Production Cost \$ per Mbtu * Solar PV PV Module Prices in 2010 \$ per W PV Balance of System Cost in 2010 \$ per W Ratio of BOS cost for other PV systems to Central Fixed system SIM_PV_Module(X,T) SIM_PV_BOS(X,T) PV CRATIO(PRC) * Solar CSP SIM_CSP(X,T) CSP_CRATIO(PRC) CSP Cost in 2010 \$ per W Ratio of reference CSP cost to other CSP techs * Nuclear Costs SIM NUCLEAR(X,T) Overnight Nuclear Cost \$ per kW * Intermediate parameters SFORE_S(FS,AY) Value added shares of GDP for TIMES sectors obtained from cge run GDP_CCE(AY) GDP from cge run GDP_CGE_FS_S(FS,X,AY) Sector GDP shares from cge run GDP_CGE_FS_S_Sum(X,AY) Sum of linked sectors shares from cge run GDP (X, AY) Overall GDP GDP_FS(FS, X, AY) GDP_FSX(FS, AY) GDP_FS_S(FS, X, AY) GDP_FS_S(FS, X, AY) GDP_FS_S_Sum(X, AY) Sector GDP Sector GDP for simulation X Sector GDP shares Sum of linked sectors shares POPX (T) Population for simulation X SIM_ERSOLP(X,ERSOLP,T) PV costs going to SATIM SIM_ERSOLT(X,ERSOLT,T) CSP costs going to SATIM * Parameters extracted from TIMES run results TVCOMNET (T, COM) Emissions from SATIM TVCAP(T, PRC) TVACT(T, PRC) TVACTELC(T, S) Capacity from SATIM Activity from SATIM Electricity output from transmission Electricity marginals downstream of transmission TVBOMBALELC(T,S) * Results kept for all simulations SIMO_CO2S(CO2SET,X,T) CO2 emissions SIMO_PWRACAP(TECHS,X,T) Capacity of power pi SIMO_PWRACT(TECHS,X,T) Production of power COMPOSITION of the second se SIMO_CO22(CO2SI,X,T) Co2 emissions SIMO_FWRCAP(TECHS,X,T) Capacity of power plants GW SIMO_FWRACT(TECHS,X,T) Production of power plants TWh SIMO_COAACT(FUELPC,X,T) Production of coal mines tons Production of coal mines tons Coal Transfers from Waterberg to CB tons Average Coal Price for power plants R per ton Average Coal Price for power plants in waterberg R per ton Average Coal Price for power plants in central basin R per ton SIMO_COATRA(X,T) SIMO_COAPA(X,T) SIMO_COAPA(X,T) SIMO_COAPB(X,T) SIMO GASACT(FUELPG,X,T) Production of natural gas SIMO_OBJz(X) SATIM Objective function SIMO DMD(COM,X) Final year demand by end-use SIMO PEAKELC(T,X) Electricity peak (GW downstream of transmission) Electricity demand (TWh downstream of transmission) SIMO_ELCDMD(T,X) SIMO_ELCP(T,X) Electricity price * Other Parameters TGAP (AY) TIMES Gaps * Set Allocation PWRSET (PRC) Power Plants set allocation scalar POBjz; * File declarations FILE SIM COMCOST_FILE /".\satm\Gams_WrkTI\sim_comprice+REGION1.dds"/; FILE SIM_PRCCOST_FILE /".\satm\Gams_WrkTI\sim_prccost+REGION1.dds"/; FILE SIM_DEM_FILE /".\satm\Gams_WrkTI\sim_dem+REGION1.dds"/; * Import sets and parameters from Base TIMES run \$gdxin .\SATM\Gams_WrkTI\Gamssave\run02_MC.gdx \$load PRC COM DEM ALLYEAR T S COM_PROJ DEM1(COM) = DEM('REGION1', COM);

* Base year demand COM_PROJ_BY(COM) = COM_PROJ('REGION1','2006',COM);

* Import sets and parametes from Base CGE run * \$gdxin output1_bu.gdx \$gdxin simulation1.gdx \$load XC TC FS FH INS SFORE * Set Exchange Rate (Constant for now-based on differential inflation rate differentials) XRATE(X,T) = 8.23;* Import MC parameters and data from spreadsheet \$call "gdxxrw i=MCSim.xlsx o=mcsim index=index!a6 checkdate" \$loadd FUELP FUELPC FUELPC FUELPCPWR FUELPCPWR_CB FUELPCPWR_A FUELPG \$loadd TECHS TECHC ETC ETCA ETG ETGIH ETN ERH ERSOLP ERSOLPC ERSOLPR ERSOLT ERW ERB CO2SET \$load PWRSET \$load GWRSEI \$load SIM_POP SIM_GDP_Y SIM_COM_S \$load SIM_GCOAL SIM_GGAS SIM_GOIL OCRFAC \$load COAL_CV SIM_CLE1 SIM_CLE2 SIM_CLN SIM_CLE_A SIM_CLN_A \$10ad COL_CV SIM_CLE1 SIM_CLE2 SIM_CLN SIM_CLE_A SIM_CLN_A \$10ad SIM_GIH \$10ad PV_CRATIO SIM_PV_MODULE SIM_PV_BOS CSP_CRATIO SIM_CSP SIM_NUCLEAR * Preparation of cge input data FS_L(FS) = YES; FS_L('agr') = no; FS_L('elec') = no; FS_L('com') = no; FS_U(FS) = not FS_L(FS); *Count gap between TIMES years set TA(ALLYEAR) TIM TIMES years /2006*2050/; T1(T)\$(ORD(T) EQ 1) = YES; T2(T)\$(ORD(T) EQ 2) = YES; TO(T) = yes;TO(T1) = no; $\mathsf{TGAP}\left(\mathsf{AY}\right) \$ \left(\mathsf{T}\left(\mathsf{AY}\right) \mathsf{ AND } \mathsf{ NOT } \mathsf{T1}\left(\mathsf{AY}\right)\right) = \mathsf{ORD}\left(\mathsf{AY}\right) - \mathsf{SMAX}\left(\mathsf{TP}\$\mathsf{T}\left(\mathsf{TP}\right), \mathsf{ ORD}\left(\mathsf{TP}\right)\$\left(\mathsf{ORD}\left(\mathsf{AY}\right) \; \mathsf{GT } \mathsf{ ORD}\left(\mathsf{TP}\right)\right)\right);$ * set inital and following years' shares equal to shares in cge run GDP_CGE(TC) = sum(FS, SFORE(FS,'base',TC)); SFORE_S(FS,TC) = SFORE(FS,'base',TC)/GDP_CGE(TC); *GDP_FS_S(FS,X,TO) = 1; GDP_CGE_FS_S(FS,X,TO) = SFORE_S(FS,TO); GDP_CGE_FS_S(FS,X,T1) = GDP_CGE_FS_S(FS,X,'2010'); * Calculate GDP shares for all simulations GDP(X,'2006') = 1; *loop(T\$(NOT T1(T)), Loop(TA\$(NOT T1 (TA)), * GDP(X,T) = GDP(X,T-1)*((1+SIM_GDP_Y(X,T))**TGAP(T)); GDP(X,TA) = GDP(X,TA-1)*((1+SIM_GDP_Y(X,TA)));); * set all shares equal to that of cge GDP_FS_S(FS,X,T) = GDP_CGE_FS_S(FS,X,T); GDP_CGE_FS_S_Sum(X,T) = sum(FS_L, GDP_CGE_FS_S(FS_L,X,T)); set 'com' shares equal to that of sim GDP_FS_S('com',X,T) = SIM_COM_S(X,T); GDP_FS_S_Sum(X,T) = 1-sum(FS_U, GDP_FS_S(FS_U,X,T)); * set 'linked' sector shares equal in proportion to what's in cge GDP_FS_S(FS_L,X,T) = GDP_CGE_FS_S(FS_L,X,T)/GDP_CGE_FS_S_Sum(X,T)*GDP_FS_S_Sum(X,T); * calculate sector GDP GDP FS(FS,X,T) = GDP FS S(FS,X,T)*GDP(X,T); Set Fuel Prices/Costs * Set Fuel Prices/Costs * Coal mining/exports (x/0.8+35 is washing costs and yield effect) * 0.95 on exports assumes a 5% royalty SIM_FUELP('MINCLE1',X,T) = SIM_CLE1(X,T); SIM_FUELP('MINCLE2',X,T) = SIM_CLE2(X,T); SIM_FUELP('MINCLE3',X,T) = SIM_CLE2(X,T)/0.8+35; SIM_FUELP('MINCLE',X,T) = SIM_CLN(X,T); SIM_FUELP('MINCLE',X,T) = SIM_CLN(X,T); SIM_FUELP('MINCL',X,T) = SIM_CLA(X,T); SIM_FUELP('MINCL',X,T) = SIM_CLA(X,T); SIM_FUELP('MINCLS',X,T) = SIM_CLA(X,T); SIM_FUELP('MINCLS',X,T) = SIM_CLA(X,T); SIM_FUELP('MINCLS',X,T) = SIM_CLA(X,T); SIM_FUELP('MINCLS',X,T) = SIM_CLA(X,T); * Exports SIM_FUELP('PEXCME', X, T) = SIM_GCOAL(X, T) * 0.95 * XRATE(X, T) * (-1); * Convert coal prices from 2013 R/ton to 2010 R/GJ SIM_FUELP(FUELPC,X,T) = SIM_FUELP(FUELPC,X,T)/COAL_CV(FUELPC) / 1.172; Oil and derivatives prices SIM_FUELP(FUELPO,X,T) = SIM_GOIL(X,T) * XRATE(X,T) * OCRFAC(FUELPO,'a') + OCRFAC(FUELPO,'b'); * Natural Gas Techs, +1, +0.5 for GWL and GRL are the transport costs ^ Matural Gas lechs, +1, +0.5 for GwL and GRL are the transport costs
* the 0.95 for the export price is a royalty fee
SIM_FUELP('MINGIH',X,T) = SIM_GGAS(X,T) +1 * XRATE(X,T) / 1.055;
SIM_FUELP('IMPGRL',X,T) = (SIM_GGAS(X,T) +0.5) * XRATE(X,T) / 1.055;
SIM_FUELP('PEXGAS',X,T) = SIM_GGAS(X,T) *0.95 * XRATE(X,T) / 1.055 * (-1); Allocate Power Plant Techs Sets - can't get this to work *ERSOLT(PRC)\$(PWRSET(PRC) eq 5)=yes; *ERSOLP(PRC)\$(PWRSET(PRC) eq 6)=yes;

```
* Calculate Solar costs based on 2010 ratios and smpled data, assuming ratios stay the same
* and converting to R/kW as needed by SATIM
SIM_TECHC(ERSOLP,X,T) = (PV_CRATIO(ERSOLP) * SIM_PV_BOS(X,T) + SIM_PV_MODULE(X,T)) * 1000 * XRATE(X,T);
SIM_TECHC(ERSOLT,X,T) = CSP_CRATIO(ERSOLT) * SIM_CSP(X,T) * 1000 * XRATE(X,T);
* Calculate Nuclear Cost converting from 2010 $ to 2010 R
SIM_TECHC(ETN,X,T) = SIM_NUCLEAR(X,T) * XRATE(X,T);
```

```
scalars
```

```
EFVAL temporary values stored here XLTEST
```

.

LOOP(X,

```
* Processing of spreadsheet input before exporting to TIMES
```

```
* Calculate Sectoral GDP
```

```
GDP_FSX(FS,T) = GDP_FS(FS,X,T);
POPX(T) = SIM_POP(X,T);
execute_unload "MCDem.gdx" POPX COM_PROJ BY GDP FSX
```

```
$ontext 'xlstalk.exe -m DMD_PRJ_MC.xlsm';
XLTEST = ERRONELVEL;
IF(XLTEST = 1,
    execute 'xlstalk.exe -c DMD_PRJ_MC.xlsm';
);
IF(XLTEST = 2,
    execute 'xlstalk.exe -s DMD_PRJ_MC.xlsm';
);
```

\$offtext

*\$offtext

execute 'gdxxrw.exe i=MCDem.gdx o=DMD_PRJ_MC.xlsx index=index_G2E!a6';

* execute 'xlstalk.exe -o DMD_PRJ_MC.xlsm';

execute 'gdxxrw.exe i=DMD_PRJ_MC.xlsx o=mcdem2.gdx index=index_E2G!a6 checkdate'

execute_load "mcdem2.gdx" SIM_DEMX

```
* Fuel Price DDS file
PUT SIM_COMCOST_FILE;
SIM_COMCOST_FILE.pc = 2;
SIM_COMCOST_FILE.nd = 5;
SIM_COMCOST_FILE.ap = 0;
 PUT 'PARAMETER AACT_COST /' /;
LOOP((FUELP,T),
  EFVAL = SIM_FUELP(FUELP,X,T);
if(EFVAL,
     PUT "REGION1.", FUELP.TL, ".", T.TL, EFVAL /;
  );
);
PUTCLOSE "/;";
* Tech Cost DDS File
PUT SIM_PRCCOST_FILE;
SIM_PRCCOST_FILE,pc = 2;
SIM_PRCCOST_FILE.nd = 5;
SIM_PRCCOST_FILE.ap = 0;
PUT 'PARAMETER ANCAP_COST /' /;
LOOP((TECHC,T),
  EFVAL = SIM_TECHC(TECHC, X, T);
if(EFVAL,
     PUT "REGION1.", TECHC.TL, ".", T.TL, EFVAL /;
  );
);
PUTCLOSE "/;";
*$ontext
* Demand DDS File

PUT SIM_DEM_FILE;

SIM_DEM_FILE.pc = 2;

SIM_DEM_FILE.nd = 5;

SIM_DEM_FILE.ap = 0;
PUT 'PARAMETER ACOM_PROJ /' /;
LOOP((DEM1,TC),
  EFVAL = SIM_DEMX(DEM1,TC);
   if (EFVAL,
     PUT "REGION1.", DEM1.TL, ".", TC.TL, EFVAL /;
ELSE
     PUT "REGION1.", DEM1.TL, ".", TC.TL, "EPS" /;
  );
);
PUTCLOSE "/;";
```

```
* Run TIMES model
execute ".\satm\gams_wrkti\RUNTIMES2.CMD"
* Extract Results from TIMES run
execute_load ".\links\ltimesoutput.gdx" TVCOMNET TVCAP TVACT TVACTELC TVCOMBAL TVCOMBALELC POBJz;
*TVNCAP TVNCAPF TVCAP TVFLO TVACT NCAP_ILED OBJ_ICOST TVCOMBAL TVCST_INVC TVCST_ACTC TVCST_FIXC;
* Emissions
SIMO CO2S(CO2SET,X,T) = TVCOMNET(T,CO2SET);
* Power plants
* Capacity (GW)
SIMO_PWRCAP('ETC',X,T) = sum(ETC, TVCAP(T,ETC));
SIMO_PWRCAP('ETC',X,T) = sum(ETCA, TVCAP(T,ETCA));
SIMO_PWRCAP('ETC',X,T) = sum(ETG, TVCAP(T,ETG));
SIMO_PWRCAP('ETG',X,T) = sum(ETN, TVCAP(T,ETG));
SIMO_PWRCAP('ETN',X,T) = sum(ETN, TVCAP(T,ETN));
SIMO_PWRCAP('ERSOLPC',X,T) = sum(ERSOLPC, TVCAP(T,ERSOLPC));
SIMO_PWRCAP('ERSOLPC',X,T) = sum(ERSOLPC, TVCAP(T,ERSOLPC));
SIMO_PWRCAP('ERSOLPC',X,T) = sum(ERSOLPC, TVCAP(T,ERSOLPC));
SIMO_PWRCAP('ERSOLT',X,T) = sum(ERSOLT, TVCAP(T,ERSOLP));
SIMO_PWRCAP('ERSOLT',X,T) = sum(ERSOLT, TVCAP(T,ERSOLP));
SIMO_PWRCAP('ERSOLT',X,T) = sum(ERSOLT, TVCAP(T,ERSOLT));
SIMO_PWRCAP('ERB',X,T) = sum(ERR, TVCAP(T,ERB));
   Power plants
* Production (TWh)
SIMO_PWRACT('ETC',X,T) = sum(ETC, TVACT(T,ETC));
SIMO_PWRACT('ETCA',X,T) = sum(ETCA, TVACT(T,ETCA));
SIMO_PWRACT('ETCA',X,T) = sum(ETG, TVACT(T,ETG));
SIMO_PWRACT('ETCIH',X,T) = sum(ETGIH, TVACT(T,ETGIH));
    SIMO_PWRACT('ETN',X,T) = sum(ETN, TVACT(T,ETN));
SIMO_PWRACT('ERH',X,T) = sum(ERH, TVACT(T,ERH));
    SIMO_PWRACT('ERH',X,T) = sum(ERH, TVACT(T,ERH));
SIMO_PWRACT('ERSOLPC',X,T) = sum(ERSOLPC, TVACT(T,ERSOLPC));
SIMO_PWRACT('ERSOLPR',X,T) = sum(ERSOLP, TVACT(T,ERSOLPR));
SIMO_PWRACT('ERSU',X,T) = sum(ERSOLT, TVACT(T,ERSOLT));
SIMO_PWRACT('ERB',X,T) = sum(ERR, TVACT(T,ERN));
SIMO_PWRACT('ERB',X,T) = sum(ERR, TVACT(T,ERR));
SIMO_PWRACT(TECHS,X,T) = SIMO_PWRACT(TECHS,X,T)/3.6;
* Coal Mine Production
SIMO_COAACT(FUELPC,X,T) = TVACT(T,FUELPC)/COAL_CV(FUELPC);
Coal Price Calculation
* Waterberg Price
   SIMO_COAPA(X,T) = (sum(FUELPCPWR_A, (TVACT(T,FUELPCPWR_A)*SIM_FUELP(FUELPCPWR_A,X,T))))
/ (sum(FUELPCPWR A,TVACT(T,FUELPCPWR_A))/COAL CV('MINCLE1'))*1.172;
* Gas Production
   SIMO_GASACT(FUELPG, X, T) = TVACT(T, FUELPG);
* Final year demand
    SIMO_DMD(DEM1,X) = SIM_DEMX(DEM1, '2050');
 * Electricity demand TWh
SIMO_ELCDMD(T,X) = sum(S, TVACTELC(T,S))/3.6/0.961;
* Electricity Peak demand GW
SIMO_PEAKELC(T,X) = TVCAP(T,'ETRANS')/0.961;
* Electricity price 2013 R/kWh
SIMO_ELCP(T,X) = sum(S, TVACTELC(T,S)*TVCOMBALELC(T,S))*1.172*3.6/1000000;
* Objective function
SIMO OBJz(X) = POBJz;
```

Display X;

);