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Introduction 
 

Debates about the potential effects of climate change, the necessity for action, and the relative 

merits of different response strategies all inevitably make reference to what is expected to 

occur if we “do nothing” – meaning, loosely speaking, under policies not too different from those 

currently in place. Framing domestic climate change policies and national positions in global 

climate negotiations requires the best possible information about possible future outcomes. 

Defining this position is made by trading-off emission reductions and economic growth. Policy 

makers’ efforts in this regard are focused on achieving low carbon development at the lowest 

possible cost to the economy. This cost of mitigation is calculated as a difference in costs 

(defined in monetary units) between a baseline situation and a new one characterized by lower 

emissions (Hourcade 1996). For most developed countries the emission reduction is calculated 

relative to a benchmark date in the recent past. Usually in studies of developing countries, 

emission reduction is calculated in terms of a percentage reduction from an emission level in a 

baseline trajectory at a specified future date, often several decades in the futures. The definition 

of a baseline trajectory is problematic: 

• Uncertainty: the baseline trajectory is driven by many uncertain factors 

• Definition: which existing policies and effort are to be included in the baseline?  

• Mitigation and Development: for developing countries issues of poverty, inequality, and 

education goals need to be traded-off against mitigation goals. Are development goals and 

aspirations met in the baseline? 

 

The goal of the current project is to derive baseline forecasts of carbon dioxide and other GHG 

emissions for South Africa, from the present day to 2050. We use a mixed methodology that is 

innovative in some of its elements. Firstly, we forecast GHG emissions indirectly, by first 

obtaining forecasts of a number of key drivers of energy demand – population growth, economic 

growth, and various commodity prices. These forecasts are obtained using a combination of 

expert elicitation and a review of available local and international literature. All inputs require 

some further processing in order to take a number of independent sources – potentially 

measured over different timescales and with different frequencies – and obtain a single suitably 

fine-scaled forecast (generally an annual time series for each key driver). All forecasts are 

probabilistic in nature – that is, they include assessments of statistical uncertainty around the 

modal or most-likely trajectory.  

 

The forecasts obtained from this process are used as inputs to a South African implementation 

of TIMES (the SATIM model, see URL), a partial equilibrium linear optimisation model that 

selects a mix of energy sources and technologies that meets the forecasted demand for useful 

energy at least cost. GHG emissions, as well as other relevant outcomes, are obtained as a a 

result of the optimisation model. Monte Carlo simulation used to generate 1000 possible 

trajectories from the probabilistic projections of each key driver of GHG emissions. These are 

assembled into input matrices, each of which combines a single set of projections for each of the 

key drivers, taking into account correlations between inputs (for example, population and 

economic growth are positively associated). Finally, the SATIM model operates 

deterministically on each of these input matrices, turning each one into an annual forecast of 

GHG emissions (and other relevant outcomes). By examining the set of all simulated GHG 



emission trajectories, we arrive at a probabilistic forecast of GHG emissions for South Africa for 

the period 2014 to 2050. 

 

Long-term forecasting is a controversial topic. It is usually a highly complex task subject to 

enormous uncertainties. Its failings have been well documented. Many long-term forecasts turn 

out not just to be wrong, which is to be expected, but to be so wrong that the values that 

eventually occur lie outside of even the most extreme confidence intervals. This has led some to 

abandon attempts to quantify long-term forecasts and instead base strategic planning on 

robustness to a small number of qualitative scenarios. Nevertheless, in determining responses 

to climate change in the public sphere a quantitative forecasting approach remains popular, and 

in many instances it is almost impossible to avoid reference either explicitly or implicitly to 

baseline forecasts. The current project is an attempt to remain within the quantitative 

forecasting paradigm, but our outputs should be interpreted with the caution that must 

accompany all long-term forecasts.  

Methodology 

Definition of baseline scenario 

Designating a set of conditions constituting an emissions baseline inevitably involves a degree 

of subjectivity. The lack of a definitive code for establishing  national “baseline” conditions has 

been previously identified (Clapp & Prag, 2012). The same authors propose a set of guidelines 

for setting baselines, covering the following elements: start year and projection period, scope of 

emissions sources, assumptions related to key drivers of projections, treatment of domestic 

policy measures, modelling framework or methodology, uncertainty and sensitivity analysis, 

consultation and review, and updating procedures. In the interests of clarity and transparency 

we address each of these points below.  

Start year and timeframe for emissions projections 

Our baseline begins in 2014; projections are made to 2050. 

Scope of emissions sources covered 

At the heart of our baseline projections is SATIM, a sectoral energy model based on TIMES, a 

partial equilibrium linear optimisation model developed by ETSAP, one of the International 

Energy Agency’s implementing agencies, and a successor to MARKAL. The SATIM model uses 

five demand sectors and two supply sectors – industry, agriculture, residential commercial and 

transport on the demand side, and electricity and liquid fuels on the supply side. Sectors are 

divided in turn into subsectors. The industry sector, for example, is divided into mining, iron 

and steel, chemicals, precious and non-ferrous metals, NMM products, food, beverage and 

tobacco, pulp and paper, and “other” subsectors. The level of detail for a sector depends on the 

relative contribution of the sector to total consumption and also on how much funding has been 

historically received for developing that sector in the model, but in general can be considered 

fairly comprehensive. Full details can be found in the report by the ERC Systems Analysis and 

Planning group (2013), available at http://www.erc.uct.ac.za/Research/Otherdocs/ 

Satim/SATIM%20Methodology-v2.1.pdf. AFOLU and LULUCF emissions are currently not 

included in SATIM. 

GHG emissions that are included in SATIM are CO2, CH4 (including fugitive emissions) and N2O. 



Assumptions related to key drivers for emissions projections 

Based on knowledge of the underlying SATIM model, the following key drivers of GHG 

emissions were selected. These are shown in  

Key driver Units How assessed 

Population People Literature  

GDP growth %/year Expert elicitation 

GDP composition % Tertiary Expert elicitation 

Global coal prices 2012 R/t Literature 

Global gas prices 2012 $/Mbtu Literature 

Global oil prices 2012 S/barrel Literature 

SA Coal prices 2012 R/t Expert elicitation & further modelling 

SA Gas prices 2012 $/Mbtu Expert elicitation 

Nuclear Costs, 

Lead Times and 

Availability 

2012 $ OCC, 

years and % 

Literature 

PV costs 2012 $/W Literature & further modelling 

CSP costs and 

Capacity Credit 2012 $/W, % 

Literature & further modelling 

Hydro Imports GW Literature 

Table 1.  
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Table 1: Selected key drivers of GHG emissions 

For each of these drivers, our goal is to obtain probabilistic forecasts at time intervals of one 

year – that is, not only annual point forecasts of mean or modal “expected values”, but also an 

assessment of the statistical uncertainty around each of those point estimates, expressed as a 

probability distribution. These forecasts, together with the assumptions underlying these 

forecasts, are described in detail in later sections. 

 



Treatment of domestic climate policy measures 

We define our baseline with no climate policy measures for South Africa, without necessarily 

imposing business as usual globally. That is, we include the possibility that global steps are 

taken to mitigate climate change but that, for whatever reasons, South Africa remains in a 

“business as usual” scenario, South Africa does not implement its ‘Copenhagen pledge, that is 

the 34% deviation below BAU by 2020 and 42% by 2025. This primarily manifests in 

international commodity prices, which influence local prices particularly in the case of coal. 

 

Modelling framework and/or projection methodology used 

The methodology used to obtain forecasts depends on the nature of the key driver. For 

international commodity prices and for technologies in which South Africa can be expected to 

pay global prices (i.e. nuclear, PV, and CSP), a number of detailed long-term forecasts are 

available in the literature. We essentially used these forecasts verbatim, without additional 

input from expert elicitations. We describe the literature on which these forecasts are based in a 

section below. In the same vein, we used existing UN probabilistic population forecasts, which 

arguably represent the state-of-the-art in population forecasting practice.  

 

Forecasts for the other key drivers (i.e. GDP growth, share of GDP claimed by the tertiary sector, 

domestic coal prices, domestic gas prices) are based on expert elicitations. This is largely 

because reliable literature sources were unavailable or the local nature of the information 

tipped the balance in favour of expert knowledge. Detailed semi-structured interviews were 

used to elicit qualitative information on possible future outcomes, followed by a quantitative 

assessment of ranges of possible values. We followed generally accepted best practice when 

assessing this information, using the protocol outlined below. 

 

In order to keep the elicitation task manageable for experts, we assessed three-point probability 

distributions (minimum, mode, and maximum) at three distinct points-in-time (2020, 2035, 

2050). Direct elicitation of annual probabilistic forecasts i.e. annual probability distributions, 

was not considered practically feasible and in any case would be subject to overwhelming 

anchoring biases. Even with this highly restricted elicitation goal, interviews took between 2 

and 4 hours to complete, even after some preparatory work by experts before the interviews.  

 

Information gathered using either literature searches or expert elicitation was rarely in a form 

that could be directly used by the SATIM. Some “post-processing” was invariably required. 

Operations included interpolation between the three key time-points in the case of elicited 

quantities, currency standardization, temporal discounting, and aggregation over sources. 

These too are described in detail in the sections that follow. 

 

Uncertainty and sensitivity analysis 

As is clear from the above, uncertainty is a fundamental component of our approach. All of our 

projections are probabilistic by nature: uncertainty in model inputs is explicitly captured and 

this is propagated into uncertainty in model outputs via Monte Carlo simulation.   

 



Consultation and/or review 

The current document, by proposing an approach and deriving baseline estimates from this 

approach, forms a key part of this review process. Several of our model inputs are derived 

through interviews with experts in an area – GDP growth and sectoral composition, coal prices, 

and gas prices. We follow standard best practice but have interviewed only a small number of 

experts in each field. Model inputs are freely available for review. The SATIM model is also well 

documented and has been used in a number of previous applications; it too is open to review 

and scrutiny.  

 

Updating the baseline 

At the present time no plans exist to update these particular baselines. Nevertheless, the 

methodology described here is flexible in this regard. Updates could be obtained with relatively 

little effort. Our external data sources are all well-established and thus can be expected to be 

available into the future. 

 

 

Elicitation protocol 

 

Our protocol is largely a summary of three commonly used protocols: the Stanford/SRI 

protocol, Morgan and Henrion’s protocol, and the Wallsten/EPA protocol (Morgan & Henrion, 

1990). The protocol is divided into five stages. Before the interview procedure, experts are sent 

a set of documents containing relevant background information. The interview procedure itself 

comprises three stages: establishing rapport with the expert; eliciting the expert’s qualitative 

view of the problem, including factors influencing the outcome of interest; and eliciting the 

expert’s probabilistic forecasts. After the interview, the elicited judgements and statements 

derived from them are sent to the expert to verify that they are both consistent and accurately 

reflect the expert’s beliefs.  Although these stages are executed in a sequential order, it should 

be stressed that some iteration between the stages can be expected. 

 

Stage 1: Pre-elicitation 

Prior to the interview, experts were asked to read three short documents: one summarizing the 

TIMES/MARKAL model (2 pages), one summarizing the available literature and points of view, 

for the quantity to be assessed (1-3 pages), and one summarizing the literature on heuristics 

and biases in probability assessment (5 pages). These documents are provided in the appendix. 

 

Stage 2: Establishing rapport 

The goal of this stage is simply to introduce the elicitation team to the expert and provide an 

overview of the reason for the elicitation and the underlying problem at hand.  

 

Following a brief introduction of the team, we explained the TIMES/MARKAL model and the 

projections to be made, emphasising the uncertainty that exists around each of the key drivers 

to the model, and hence introduced the need for probabilistic forecasts. We then briefly noted 

the difficulties of long-term forecasts, emphasising that there is no “correct” answer to any of 

the elicitation questions, and that our main aim is to obtain judgments that reflect the expert’s 



expressed beliefs, in particular the extent of their uncertainty, which may be large. Finally, 

experts were informed that if at any stage they felt truly unable or uncomfortable making 

numerical probability judgements, other qualitative elicitation techniques were available, 

although none ultimately made use of this option. Using the pre-interview document as a basis 

for discussion, experts were familiarised with the dangers of subjective probability assessment, 

particularly overconfidence, anchoring, and availability. 

 

Stage 3: Qualitative elicitation of factors influencing key drivers 

In this stage, experts were asked two main questions:  

 

1. What factors, broadly speaking, influence the key driver on which their expertise was 

being sought? 

2. How might these factors combine in the future, in particular to cause especially low or 

high values in the key driver? 

 

The goal of the acclimatization stage is to get the expert to think critically about the problem at 

hand, and to identify, in a qualitative way, the important factors that should influence their later 

quantitative judgments, together with some assessment of what kinds of changes are possible.  

 

The two questions above typically produced two distinct outcomes: firstly, a detailed qualitative 

description of the system relating to the key driver (the basic macro-economic model in the case 

of GDP growth, or the coal production and processing systems in the case of the coal price, for 

example); secondly, a form of “best-case” and “worst-case” scenario consisting of a qualitative 

storyline that might result in a particularly high or low value for the key driver. These views, 

which may well be at least partially constructed or modified as part of the process, form the 

justification for the later quantitative elicitation and as an audit trail for interested parties in the 

future.  

 

Most texts emphasise the need to avoid a status quo bias by encouraging broad thinking and the 

consideration of alternate viewpoints. We repeatedly prompted experts to consider how 

outcomes other than the ones that they had already specified might arise, using questions such 

as “what might cause a sustained GDP growth rate of less than 1%?” if that had not yet been 

offered as a potential outcome.  

 

Stage 4: Quantitative elicitation 

This stage contains the formal assessment of probabilistic information. To keep the task 

manageable, we did not attempt to assess detailed probability distributions but rather assessed 

three-point (minimum, mode, maximum) distributions, modifying these where additional 

information (on intermediate quantiles, for example) was offered. 

 

In order to avoid anchoring on central values, we began by asking the experts for extreme lower 

or upper values, although some experts insisted on starting with central values, and these 

requests were accommodated. All experts were more comfortable providing information first 

for 2015, then for 2030, and finally for 2050. Although this might lead later estimates to be 

biased towards 2015 values – which would, under normal conditions, be associated with overly 



narrow confidence intervals – again we felt that it would be counter-productive to force any 

other order.  

 

In all cases, we attempted to combat overconfidence and overly narrow confidence intervals by 

asking the expert to think of scenarios that would result in values more extreme than the 

extreme values just given. Once ranges of extreme values had been given, we asked for a modal 

(most likely) value. 

 

Stage 5: Post-elicitation verification 

The aim of this stage is to present the expert with his or her elicited qualitative and quantitative 

judgements, to check that this reflects their views accurately, and to revise judgments as 

necessary. Ideally, this step would be conducted as part of the interview procedure but, because 

our interviews were already lengthy, we elected to send feedback to experts by email after the 

interview had been concluded. Feedback included a summary of their qualitative descriptions of 

the system and major influences of the key drivers and plots of the triangular probability 

density function obtained from their quantitative assessments. 

 

Post-processing of elicited and external data sources 

 

The results of our elicitation process or literature survey are probability distributions defined 

over values of the key drivers at specific time points, or mean values of the drivers over 

specified time periods. In order to convert these into simulated annual time series, we apply a 

small number of post-processing operations. 

 

In the case of probability distributions defined directly over values of the key drivers (i.e. not 

means) we: 

 

1. Use Algorithm 1 or Algorithm 2 to randomly generate values of the key driver at 2014, 

2020, 2035, and 2050 by drawing from the appropriate distributions, taking into 

account any correlational information between periods. 

2. Use Algorithm 3 to generate annual values consistent with the values generated in the 

previous step. 

 

In the case of probability distributions defined over mean values of the key drivers we: 

 

1. Use Algorithm 1 or Algorithm 2 to randomly generate mean values of the key drivers at 

2014, 2020, 2035, and 2050 by drawing from the appropriate distributions, taking into 

account any correlational information between periods. 

2. Use Algorithm 4 to generate annual values consistent with the means generated in the 

previous step. 

 



Algorithm 1: Generating correlated random samples from arbitrary distributions 

Suppose we wish to simulate 𝑁 values from each of a set of 𝑃 arbitrary distributions 

𝐹1, 𝐹2, … , 𝐹𝑃, with the resulting simulated values having a correlation matrix 𝚺. An algorithm for 

doing this to good approximation is: 

 

1. Simulate 𝑁 samples from a multivariate standard normal distribution with correlation 

matrix 𝚺.  

2. Convert the values generated in the previous step into probabilities by applying the 

univariate standard normal CDF to each of the 𝑃 samples i.e. independently. 

3. Simulate draws from the desired distributions by applying the inverse CDFs 

𝐹1
−1, 𝐹2

−1, … , 𝐹𝑃
−1 to the probabilities generated in the previous step.  

 

The simulated values preserve the desired correlation structure only approximately, because 

the transformation in step 2 preserves the rank order rather than the exact correlations. 

Nevertheless in general testing we found the approximation to be good, and given the inherent 

uncertainty in specifying the correlation in the first place, any errors introduced by the 

approximation are likely to be negligible. 

 

Algorithm 2: Generating mean-reverting random samples from arbitrary distributions 

For one of our series, experts indicated that sustained extremely high or low values over 

multiple time periods were implausible. Thus, extremely high or low values should be followed 

by periods of average (or at least, much less extreme high or low) values. This poses a problem 

for Algorithm 1 because the desired relationship is not easily expressed using correlation.  

 

Suppose we wish to simulate 𝑁 values from each of a set of 𝑃 arbitrary distributions 

𝐹1, 𝐹2, … , 𝐹𝑃, with the resulting simulated values having the “mean-reversion” property 

described above. An algorithm for doing this to good approximation is: 

 

1. Simulate 𝑁 samples from a multivariate standard normal distribution with correlation 

matrix 𝚺.  

2. Compute the ranks (in descending order) of the values in each of the samples generated 

in the previous step. 

3. Simulate draws from the desired distributions by applying the CDFs 𝐹1
−1, 𝐹2

−1, … , 𝐹𝑃
−1 to 

uniformly-distributed probabilities.  

4. Reorder each of the samples generated in the previous step so that their rank orders 

match those generated in step 2. 

 

Note that in contrast to Algorithm 1, Step 3 returns uncorrelated values from the desired 

distributions, with the correlation structure being re-introduced (approximately) in Step 4. 

Again, the simulated values preserve the desired correlation structure only approximately, 

because the transformations in step 2 preserves the rank order rather than the exact 

correlations, and this is what is imposed in step 4. Again, any errors introduced by the 

approximation are likely to be negligible compared to the degree of imprecision inherent in the 

elicitation process. 

 



Algorithm 3: Interpolating annual values between elicited values at specified time-points 

Linear interpolation between the values generated by Algorithm 1 or 2 suffers from two 

drawbacks: it almost certainly underrepresents the year-to-year variability in the underlying 

time series, and the interpolated values between two time-points are constrained to lie between 

the values at those time-points. As a result, we use the following random walk algorithm that 

starts at 𝑥𝑝,1 and is guaranteed to end at 𝑥𝑝+1,1 after a fixed number of time steps 𝜏 (in our case, 

the number of years from time-points 𝑝 + 1 to 𝑝): 

 

1. Define a drift value 𝑑𝑝 = (𝑥𝑝+1,1 − 𝑥𝑝)/𝜏. This gives the average annual change needed 

to get from 𝑥𝑝,1 to 𝑥𝑝+1,1 in 𝜏 steps (note that this is the linear interpolator). 

2. Select a step size ∆𝑝 to measures a “typical” random change in annual values around the 

drift value 𝑑𝑝 

3. For 𝑡 = 1 to 𝜏 − 2 

a. Generate three possible “moves” 

i. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 − ∆𝑝 

ii. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 

iii. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 + ∆𝑝 

b. For each possible move, calculate the distance between the terminal point 

𝑥𝑝+1,1 and the sum of the proposed value 𝑥𝑝,𝑡+1
∗  and the drift that is still to be 

added in the remaining (𝜏 − 𝑡) time periods  

 

𝑒𝑡
∗ = |𝑥𝑝+1,1 − (𝑥𝑝,𝑡+1

∗ + (𝜏 − 𝑡)𝑑𝑝)| 

 

This quantity indicates the sum of remaining random steps needed to reach the 

target point 𝑥𝑝+1,1.  

c. Calculate the maximum change due to random steps that is possible in the (𝜏 −

𝑡) time-steps that remain i.e. 𝐿𝑡 = (𝜏 − 𝑡)∆𝑝 

d.  Select one of the proposed moves at random, where the selection probabilities 

are given by 𝜃𝑡
∗ = 1 − max (0, (𝑒𝑡

∗/𝐿𝑡 − 𝜖)2), where 𝜖 is a small constant that 

prevents the selection probability going to zero where 𝑒𝑡
∗ = 𝐿𝑡 exactly (i.e. where 

the move is still strictly permissible). Thus, where a proposed move leads to a 

point that is further away from the target than the maximum remaining changes 

that may occur, 𝑒𝑡
∗ > 𝐿𝑡 and the resulting selection probability 𝜃𝑡

∗ will be zero. 

Moves become relatively less likely to be chosen as they approach this limit. 

 

Note that we do not explicitly work out the final step from 𝑥𝑝,𝜏−1 to 𝑥𝑝,𝜏 = 𝑥𝑝+1,1. In general, it 

will not be possible to reach 𝑥𝑝,𝜏 from 𝑥𝑝,𝜏−1 using only drift and the random change i.e. 𝑥𝑝,𝜏 −

𝑥𝑝,𝜏−1 − 𝑑𝑗 ≠ ∆𝑗, but the above steps are sufficient for the final “random” change required to be 

smaller than ∆𝑗, which is sufficient for the purposes of our study. 

 

Algorithm 4: Interpolating annual values between elicited means over specified time-periods 

We use a similar algorithm to the one described in Algorithm 3, except in the case when mean 

values over a period have been specified, we have no values at specified time points to anchor 

on, so that some modification is necessary. In particular, what we have been given is effectively 



an instruction that the simulated annual values between time-points 𝑝 + 1 and 𝑝 should 

collectively have the desired mean �̅�𝑝. Our “target” value is thus not the value 𝑥𝑝+1,1 but this 

mean �̅�𝑝. In other respects the algorithm is very similar to Algorithm 3. 

 

We use the following random walk algorithm that starts at 𝑥𝑝,1 and is guaranteed to sum to 𝑆𝑝 =

�̅�𝑝𝜏 after a fixed number of time steps 𝜏 (in our case, the number of years between time-points 

𝑝 + 1 and 𝑝): 

 

1. Let ∝𝑝 be the initial value of the time series. For the first period 𝑝 = 1, ∝1 is set to the 

current (2014) value of the key driver. For subsequent periods, ∝𝑝= 𝑥𝑝−1,𝜏 i.e. periods 

are defined so that last year in period 𝑝 − 1 is the same as the first year in period 𝑝.  This 

introduces a small degree of overlap between periods but allows for easy specification 

of initial values in later periods where 𝑝 > 1. Given the fairly long periods we use, the 

generally smooth nature of changes in the mean, and the inherent imprecision in the 

input information, the relative effect of this modelling choice is in all likelihood 

negligible. 

2. Define a drift value 𝑑𝑝 = 2(𝑆𝑝 −∝𝑝 𝜏)/(𝜏(𝜏 − 1)). Applying this drift will return an 

arithmetic series of length 𝜏 that starts from an initial value of ∝𝑝 and sums to 𝑆𝑝. Note 

that this, as before, is the linear interpolator. 

3. Select a step size ∆𝑝 to measures a “typical” random change in annual values around the 

drift value 𝑑𝑝 

4. For 𝑡 = 1 to 𝜏 − 1 

a. Generate three possible “moves” 

i. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 − ∆𝑝 

ii. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 

iii. 𝑥𝑝,𝑡+1
∗ = 𝑥𝑝,𝑡 + 𝑑𝑝 + ∆𝑝 

b. For each possible move, calculate the distance between the terminal sum 𝑆𝑝 and 

the sum of the series that would be obtained if the proposed value 𝑥𝑝,𝑡+1
∗  was 

accepted and extended to the final time step 𝜏 using only the drift to modify it. 

This latter sum is obtained by adding together (a) the sum of the series thus far 

𝑆𝑡 = 𝑥𝑝,1 + 𝑥𝑝,2 + ⋯ + 𝑥𝑝,𝑡, (b) the proposed value 𝑥𝑝,𝑡+1
∗ , and (c) the remaining 

sum that would be the contributed should 𝑥𝑝,𝑡+1
∗  with no further random steps 

(i.e. using only drift), given by 𝑅𝑡
∗ = (𝜏 − 𝑡)𝑥𝑝,𝑡+1

∗ + (𝜏 − 𝑡)(𝜏 − 𝑡 − 1)𝑑𝑗/2, the 

latter term being the cumulative sum of the remaining drifts to be added from 

the baseline 𝑥𝑝,𝑡+1
∗  (which, as it would appear 𝜏 − 𝑡 times, contributes the first 

term). Finally, we obtain 

 

𝑒𝑡
∗ = |𝑆𝑝 − 𝑆𝑡 − 𝑥𝑝,𝑡+1

∗ − 𝑅𝑡
∗| 

 

This quantity, as before, indicates the sum of remaining random steps needed to 

reach the target point 𝑆𝑝 and thus can be used to assess the feasibility of the 

proposed move.  

c. Calculate the maximum change due to random steps that is possible in the (𝜏 −

𝑡) time-steps that remain i.e. 𝐿𝑡 = (𝜏 − 𝑡)∆𝑝 



d.  Select one of the proposed moves at random, where the selection probabilities 

are given by 𝜃𝑡
∗ = 1 − max (0, (𝑒𝑡

∗/𝐿𝑡 − 𝜖)2).  

5. Set the final value in the series 𝑥𝑝,𝜏 to the remainder necessary to precisely obtain the 

desired sum/mean i.e. 𝑥𝑝,𝜏 = 𝑆𝑝 − 𝑆𝜏−1. This step is needed because the difference 

above will not in general be equal to the step size ∆𝑝 (though the previous steps ensure 

that it will be less than ∆𝑝). 

 

  



The SATIM model 

 

 SATIM – the South African Times Model – is a national large-scale energy model created and 

hosted by the Energy Research Centre at the University of Cape Town. This model was originally 

developped for the Long Term Mitigation Scenarios (LTMS) project but is now in its third 

generation. This section provides a brief overview of the model. Full details are provided in the 

report by the ERC Systems Analysis and Planning group (2013), available at 

http://www.erc.uct.ac.za/ Research/Otherdocs/Satim/SATIM%20Methodology-v2.1.pdf. 

 

The economy of a nation or region consumes energy from a number of primary and secondary 

sources. This energy delivers services by means of a myriad of technologies large and small. A 

model of the demand for energy needs to capture this complex structure and thus these sources 

and technologies need to be organised in some logical way. The SATIM energy model is an 

attempt at just such a model. It is a parameterisation of TIMES, for the South African energy 

system. TIMES is a partial equilibrium linear optimisation model developed by ETSAP, one of 

the International Energy Agency’s implementing agencies, and a successor to MARKAL.  

 

The SATIM model is a stylized representation of the whole energy system, with an optimization 

step that selects the mix of supply-side technologies that meets the demand for final energy at 

least cost. The model includes economic costs, emissions, and a range of sector-specific 

constraints that can be applied at a point in time or cumulatively. A user interface provides a 

framework for both structuring the model and scenarios, and also for interpreting results. The 

model has proven useful in assessing the complex interrelationships between potential 

mitigation policies. 

 

The SATIM model is fundamentally “sectoral”, in that it organises the demand for energy by 

economic sector, and characterises the demand for energy in a sector by the energy services 

required by that sector. The SATIM model has five demand sectors and two supply sectors – 

industry, agriculture, residential commercial and transport on the demand side, and electricity 

and liquid fuels on the supply side. The level of detail for a sector depends on the relative 

contribution of the sector to total consumption and also on how much funding has been 

historically received or how much knowledge was available for developing that sector in the 

model. Thus the model for the Transport sector is quite detailed but that of the Agricultural 

sector is quite simplistically represented in SATIM, because in South Africa the Agriculture 

sector accounts for relatively small energy consumption and low emissions. 

 

In SATIM, services supplied to each of the five sectors are driven by technologies that require 

energy, with the quantity of energy required depending on the efficiency of the technology. 

Useful energy (the energy service) is an exogenous model input disaggregated by energy end-

use, for each demand sector. Final energy demand is determined endogenously using the 

assumed efficiencies of the least cost demand-side technologies selected by the model. The two 

supply sectors and primary energy sources must meet the sum of these demands, with the 

model optimizing the mix of supply-side technologies to meet the demand for final energy at 

least cost.  

 



The SATIM model includes a number of parameters and general assumptions for each sector 

broadly covering: (a) the structure of the sector and its energy services as it impacts on the 

demand for energy; (b) the establishment of base year demand for energy in the sector; (c) 

technical and cost parameters of the technologies available to satisfy the demand for energy 

services currently and in the future; (d) the projection of future demand for energy services. 

Alternate Model sensitivity analysis 
The model setup and underlying assumptions within the model itself can affect the results. In 
this section, we describe the alternate models used to undertake a model sensitivity analysis in 
order to gauge how the model behaves under differing setups.  

The Myopic model 

Background  
Optimisation models are usually run as perfect foresight models, that is – all information 
contained in the model is known to the ‘central planner’ or rather the solver for the entirety of 
the model horizon. However, this is not the case for real world decision makers where future 
commodity and technology prices are not certain and decisions that are made are done so while 
taking into account variables known only at the time of making decisions (Keppo & Strubegger, 
2009). These decisions made with limited foresight have lasting effects on the overall energy 
system, they affect the choice of decision makers in the future as they become ‘locked-in’ to the 
system.  
 
Myopic modelling is the method of simulating limited foresight - where the energy model 
optimises over a period which is shorter than the total model horizon and solves these periods 
subsequently sequentially? until the model reaches the end horizon. The myopic method allows 
the analyst to study the impacts of unforeseeable price shocks on the system, and to study the 
effects of incomplete information (Keppo and Strubegger, 2009; Hedenus, Johansson and 
Lindergren, 2013). 
 
 



Method 
The myopic optimisation model run is carried out by using the time-stepped model variant in 
TIMES. The procedure is described by way of an example taken from the TIMES manuals: in 
Figure 1 the model horizon is for 80 years, but the model optimises over 20 years and once 
complete, the model goes back 10 years and optimises for the next 20 year period. In this 
example the model reviews the optimisation path every 10 years.  

 
Figure 1: Overview of myopic process in TIMES.  Figure taken from the TIMES user manual (Lehtila, 2011) 

In this study, the model was set up to run as the Time-stepped model variant option available in 
ANSWER-TIMES with 10 years as the planning horizon and a 5 year overlap – essentially 
reviewing the planning every 5 years. The overall horizon to 2050 does not change. A review 
every 5 years one could argue would agree with real world practice - in South Africa the 
IRP2010 originally published in 2011 is in the final stages of being updated before being 
released at the time of writing.  
 

The Global Discount Rate 
The global discount rate in the model? is set to 8% in line with the recent National Integrated 
Resource plan efforts (DOE 2011). The global discount rate however, is an important 
determinant as it affects how the technologies with high upfront capital costs (e.g. nuclear and 
renewables) compete with technologies with relatively low upfront costs but higher fuel costs 
over the life of the technology. For this reason Two alternate discount rates are used in the 
simulation:  

- 5%, which would emulate a more “social” discount rate or where finance of energy 
projects is made relatively less costly. 

- 11%, which would emulate the cost of finance faced by private investors.  



Probabilistic projections of key drivers of GHG emissions 
 

GDP growth 

Overview 

We conducted elicitation interviews with two experts on the subjects of GDP growth and the 

GDP sectoral distributions. Both experts preferred to think about GDP growth in terms of a 

mean growth rate (in %) over three intervals (2014-2020, 2020-2035, 2035-2050), rather than 

the annual growth rate in 2020, 2035, 2050. The elicited probability distributions thus covered 

possible values in the mean growth rate over these three periods.  

 

Summary of qualitative discussions 

Influential factors 

Under the standard macroeconomic model, 𝐺𝐷𝑃𝑅 = (𝑇𝐹𝑃)𝐾𝛼𝐿1−𝛼, where 𝐺𝐷𝑃𝑅 is real GDP; 𝐾, 

𝐿, 𝐸, and 𝑇𝐹𝑃 are capital, labour, energy, and total factor productivity, and 𝛼 is a parameters to 

be estimated. Factors influencing capital growth include investment rates (public and private), 

domestic and foreign savings. A useful back-of-envelope calculation is the incremental capital-

output ratio, 𝐼𝐶𝑂𝑅 = (𝐼/𝐺𝐷𝑃𝑅)/Δ𝐺𝐷𝑃𝑅, where 𝐼 is investment, so 𝐼/𝐺𝐷𝑃𝑅 is the investment 

rate. Currently, South Africa’s investment rate is roughly 20%, giving an incremental capital-

output ratio of roughly 𝐼𝐶𝑂𝑅 = 0.2/0.035 = 5.7. Thus, for a desired GDP growth rate of 6% for 

example, the investment rate would need to be (rearranging the subject of the formula above) in 

the region of 5.7 × 0.06 = 34% i.e. almost doubled. Factors influencing labour market growth 

include population growth, comprising domestic population growth and immigration. Factors 

influencing TFP include education and skills (quality of labour), technological innovation 

(quantity of labour), and good governance/strong institutions. Other factors affecting growth 

prospects included: the growth of other African economies, global economic growth, and SA’s 

ability to export.  

 

Trends and scenarios  

In the period 2014-2020, there is no sign of a change in fundamentals that would shift SA out of 

its current GDP growth band of 2.0-3.5%.  To shift the mean (over period 2014-2020) to 3.5% 

would require large improvements from the current base of around 2.4%, starting immediately 

– this is unlikely. There is not enough economic incentive (among business, labour, or 

government) to change the basic institutional agreements in place. Thus, TFP growth continues 

at 1-1.5% and there is a slow absorption of labour into the workforce. Although unlikely, it is 

plausible that the labour market could be substantially opened up by changes to government 

legislation. This would be most likely to happen at the skilled end of the job market. Capital 

growth rates are also unlikely to change dramatically, perhaps varying between 18% and 22%.  

 

Over the medium term i.e. 2020-2035, large changes to the current GDP growth rate could 

occur. Over a 10-15 year period, mean investment rates of greater than 30% are certainly 

plausible, and have been achieved by, for example, China and Japan. Under a high growth 

scenario, current energy constraints would be removed and energy would potentially be 



sourced from, and shared with, neighbouring countries; the labour market would be expanded, 

particularly at the skilled end and predominantly (probably) from other African countries, by 

changes to legislation and/or incentives; and the world economy would have recovered from its 

current state and be in a “boom” scenario. Under a low growth scenario, the opposite would 

occur: current legislation prohibiting (or making very difficult) free flows of labour, energy 

constraints, low investment and low global economic growth. In setting limits to growth rates, it 

was noted that growth rates in excess of 6% have never been observed for long periods of time; 

while if growth rates drop much below 1.5% for any significant period of time political stability 

is seriously at risk. 

 

In the long-term, the same general growth paths may occur as in the period 2020-2035. That is, 

there is a possibility of high average growth to be sustained over a decade, if this has not 

already occurred; or on the downside, for relatively low growth to be tolerated for a decade 

before civil action forces change. Both experts indicated that there should be some form of 

mean-reversion between the medium- and long-terms, such that, if there has been a period of 

either high or low growth in 2020-2035, the GDP growth rate returns to moderate levels; if 

there has been a period of moderate growth in 2020-2035, then GDP growth rate in 2035-2050 

may move either up or down.  

Quantitative forecasts 

 

Figure 2 shows the probability distributions elicited from the two experts: 

 

 
Figure 2: Elicited distributions for mean annual GDP growth rate (2 experts) 

 

Post-processing 

The experts’ elicited distributions were combined by a simple averaging process, and converted 

into annual time series using Algorithm 2 and 4. When generating simulated mean values for 

the three time periods 2014-2020, 2020-2035, and 2035-2050, we impose a moderate negative 

autocorrelation between the extremeness of values obtained for 2020-2035 and 2035-2050, by 

setting Σ23 = Σ32 = −0.4. Sample trajectories generated by Monte Carlo simulation are shown 

in Figure 3. The green line shows the median trajectory, the red lines the 95% confidence 

interval and the blue lines the 80% confidence interval. 



 

 
Figure 3: Probabilistic projections of annual GDP growth rate over the period 2014 – 2050. 

 

Tertiary sector share of GDP 

 

Overview  

The SATIM model allows a distinction to be made between GDP growth rates in different sectors 

of the economy. For the purposes of our study, the primary distinction is between growth rates 

in the tertiary (service) sector and growth rates outside the tertiary sector (agriculture, mining, 

and manufacturing). We elicited probability distributions associated with the share of GDP 

provided by tertiary sector activities at the three key time-points 2020, 2035, 2050, from the 

same two experts from whom we elicited forecasts on GDP growth. 

 

Summary of qualitative discussions 

 

Influential factors 

Traditional models of economic development propose that the main focus of a country’s 

economy shifts from the primary sector, through the secondary sector, to the tertiary sector. 

This is effectively a result of mechanisation and development of industry, and then greater 

disposable incomes in a post-industrial society. It is sometimes called a “TPF1-led” path to 

growth, since TFP tends to increase sharply with the initial shift into manufacturing and 

industrial processes. However, there is now some debate about whether, perhaps as a result of 

increased globalisation, this traditional path to growth has been closed off. Recent growth 

                                                             
1 TFP: Total Factor Productivity 



success stories, particularly in resource-based economies like South Africa, have not seen an 

increase in manufacturing (e.g. Botswana). 

 

South Africa is a resource economy with a relatively small manufacturing sector compared to 

countries with similar size economies. Drivers of change to its contribution include: labour 

strength (unions), currency strength, geographic positioning relative to major consumers 

(transport costs), and the existence of “value chains”. Changes in the primary sector are largely 

functions of the resources (e.g. of discovered mineral deposits) and the degree of mechanisation 

in that sector. Increased tertiary sector contributions occur when incomes rise above the point 

required to satisfy basic material needs, and people can afford to spend more on, for example, 

education, health, and entertainment. 

 

Trends and scenarios  

The contribution of the agricultural sector is very unlikely to grow: agriculture is already highly 

mechanised, water resources and arable land are constrained. Were SADC to become more 

integrated, agricultural activities might become cheaper to perform outside South Africa. 

Primary sector contributions would fall as a result, mostly in favour of the tertiary sector, with 

the secondary sector, which benefits from the cheaper raw materials, also increasing its share. 

 

The contribution of the mining sector is uncertain. There is current strong downward pressure 

on mining investment, due to strong unions, uncertainty about future government policies, and 

relatively better opportunities for South African mining companies abroad. However, there is at 

the same time the possibility of increased mining activity through fracking. Thus the fate of the 

secondary sector is uncertain – it may benefit from increases in mining activity were these to 

happen; or it may process existing raw materials more efficiently, but a decrease in contribution 

is also a distinct possibility. 

 

The contribution of the tertiary sector to the South African economy is already at a high level, 

for a country of South Africa’s size and stage of economic development. Thus while its 

contribution may rise somewhat, it is unlikely to see very large increases. 

 

Both experts felt that large changes in the contributions made by the three sectors were 

unlikely. A large shift would be of the order of a 3% change in a sector’s share per decade. Thus, 

over the roughly 3.5 decades until 2050, sectors could undergo a net change of, at most, about 

10%. Currently, the tertiary sector, excluding transport services contributes around 65% of 

South Africa’s GDP. 

 

Quantitative forecasts 

Figure 4 shows the probability distributions elicited from the two experts: 

 

 



 
Figure 4: Elicited distributions for tertiary sector contribution to GDP (2 experts) 

 

Post-processing 

The experts’ elicited distributions were combined by a simple averaging process, and converted 

into annual time series using Algorithm 1 and 3. When generating values for the three time 

points 2020, 2035, and 2050, we impose a moderate positive autocorrelation between the 

values obtained in consecutive periods, by setting off-diagonal correlations to 0.3 i.e. Σ𝑖𝑗 =

0.3, ∀𝑖 ≠ 𝑗. Sample trajectories generated by Monte Carlo simulation are shown in Figure 5. 

 

 
Figure 5: Probabilistic projections of tertiary share of GDP over the period 2014 – 2050. 

 

  



Population growth 

 

Overview 

Models for producing probabilistic population projections have been recently developed 

specifically for use by the United Nation Population Division (Raftery, Li, Sevcikova, Gerland, & 

Heilig, 2012). We use the estimates generated by these models. For the sake of completeness we 

describe the methodology in detail below. (Alkema, et al., 2011) 

 

Changes in a country’s population are determined by a number of factors, but chiefly fertility 

and mortality. The approach employed by the UN comprises three main models: one for total 

fertility rate, from which trajectories of age-specific fertility rates are obtained; another 

estimates life expectancy at birth for females and males, which are also converted into 

trajectories of age- and sex-specific mortality rates; and a final model that converts the fertility 

and mortality trajectories into a trajectory of all population quantities of interest (e.g. total 

population, working age population, etc..). 

 

Methodology 

 

Fertility model 

The model for total fertility rate (TFR) specifies that a country’s TFR passes through three 

stages: a high fertility phase, a transition phase, and a post-transition low fertility phase. At the 

present time, the TFR in all countries has started to decline (Alkema, et al., 2011), so that Phase 

I is represented by historical data. The other two stages are each represented by their own 

statistical models. The starting points for Phase II and III are determined by deterministic rules. 

Starting points for Phase II are given by the most recent period with a local maximum fertility 

rate within 0.5 of the global maximum, provided this local maximum fertility exceeds 5.5. If it 

does not the start point is set to the beginning of the observation period. Two consecutive five-

year periods of increasing TFR below a TFR of 2 children defines entry into Phase III. 

 

In the transition phase, five-year changes (declines) in TFR are modelled using a double-logistic 

function 

 

𝑔(𝜽𝒄, 𝑓𝑐,𝑡) =
−𝑑𝑐

1 + 𝑒𝑥𝑝(−2ln (9)(𝑓𝑐,𝑡 − ∑ Δ𝑐𝑖 + 0.5Δ𝑐1)𝑖 /Δ𝑐1)

+
𝑑𝑐

1 + 𝑒𝑥𝑝(−2ln (9)(𝑓𝑐,𝑡 − Δ𝑐4 − 0.5Δ𝑐3)/Δ𝑐3)
 

 

where 𝑓𝑐,𝑡 is the current TFR i.e. in country 𝑐 at time 𝑡, and 𝜽𝒄 = (Δ𝑐1, Δ𝑐2, Δ𝑐3, Δ𝑐4, d𝑐) is a set of 

country-specific parameters that determine the shape of 𝑔(𝜽𝒄, 𝑓𝑐,𝑡). These parameters are 

estimated using a Bayesian hierarchical model, which assumes that country-specific parameters 

are drawn from probability distributions defined over all countries. These “world-level” 

probability distributions are updated using a country’s historical data and Bayes’ theorem, with 

the resulting posterior distributions conveying information about the country-specific 



parameter values. Parameter estimates can be obtained by drawing from the posterior 

distributions. The hierarchical model models changes in the fertility rate according to a random 

walk with drift i.e. 

 

𝑓𝑐,𝑡+1 = 𝑓𝑐,𝑡 − 𝑑𝑐,𝑡 + 𝜀𝑐,𝑡+1 

 

where 𝑑𝑐,𝑡 is the expected five-year decrement and 𝜀𝑐,𝑡 is a random distortion term. The drift 

term 𝑑𝑐,𝑡 is given by  𝑔(𝜽𝒄, 𝑓𝑐,𝑡) for 𝑓𝑐,𝑡 > 1, and is set to 0 if TFR drops below 1. The disturbance 

term is distributed 𝑁(𝑚𝑡 , 𝑠𝑡
2) for 𝑡 = 𝜏𝑐, the start of the fertility transition, and 𝑁(0, 𝜎(𝑓𝑐,𝑡)2) in 

the remainder of the phase. Gaussian world distributions are defined for each of the parameters 

in 𝜽𝒄 (or suitable transformations of these parameters), suitably dispersed prior distributions 

specified for the other parameters above, and posterior distributions obtained using Markov 

Chain Monte Carlo.  

 

In the post-transition phase, the TFR is modelled as a first-order autoregressive (AR) process, 

with its mean set to the approximate replacement fertility level of 2.1: 

 

𝑓𝑐,𝑡+1 =  𝑓𝑐,𝑡 + (1 − 𝜌)(2.1 − 𝑓𝑐,𝑡) + 𝑒𝑐,𝑡 

 

where 𝜌 is the AR parameter and 𝑒𝑐,𝑡~𝑁(0, 𝑠2) is a random error term. These parameters 

(which are not country specific) are estimated using maximum likelihood). 

 

Once probabilistic projections of the TFR have been obtained, these are converted into age-

specific fertility rates by multiplying the TFR by age-specific percentages from the 2010 edition 

of the UN World Population Prospects. These percentages are applied throughout the projection 

period. 

 

Life expectancy model 

The life expectancy model comprises three main elements. First, probabilistic projections of 

female life expectancy at birth are obtained, using a Bayesian hierarchical model similar in 

many respects to that used for TFR projections – that is, it is also a random walk with drift, the 

drift term is again is a double logistic function of current life expectancy. Second, probabilistic 

projections of male life expectancy at birth are generated conditional on the projections for 

females. Finally, both of these projections are converted into age-specific mortality rates. We 

discuss these elements in more detail below. 

 

Similarly to the modelling of the TFR, female life expectancy at birth in country 𝑐 at time 𝑡 is 

assumed to follow a random walk with drift 

 

𝑙𝑐,𝑡+1 = 𝑙𝑐,𝑡 + 𝑔(𝜽𝒄, 𝑙𝑐,𝑡) + 𝜀𝑐,𝑡+1 

 

where the drift term 𝑔(𝜽𝒄, 𝑙𝑐,𝑡) models the five-year gains in life expectancy and is given by the 

double logistic function 

 



𝑔(𝜽𝒄, 𝑙𝑐,𝑡) =
−𝑘𝑐

1 + 𝑒𝑥𝑝(−𝐴1(𝑙𝑐,𝑡 − Δ𝑐1 − 𝐴2Δ𝑐2)/Δ𝑐2)

+
𝑑𝑐

1 + 𝑒𝑥𝑝(−𝐴1(𝑙𝑐,𝑡 − ∑ Δ𝑐𝑖
3
𝑖=1 − 𝐴2Δ𝑐4)/Δ𝑐3)

 

 

where 𝑙𝑐,𝑡 is the current life expectancy (for females at birth in country 𝑐 at time 𝑡), and 𝜽𝒄 =

(Δ𝑐1, Δ𝑐2, Δ𝑐3, Δ𝑐4, k𝑐 , z𝑐) is a set of country-specific parameters that determine the shape of 

𝑔(𝜽𝒄, 𝑙𝑐,𝑡). 𝐴1 and 𝐴2 are constants. The disturbance term 𝜀𝑐,𝑡+1 is distributed as 𝑁(0, 𝜔𝑓(𝑙𝑐,𝑡)) 

with 𝑓(𝑙𝑐,𝑡)) a smooth, declining function of 𝑙𝑐,𝑡. These parameters are estimated using MCMC 

with the “world-level” probability distributions and associated priors for the hierarchical model 

given in (Raftery et al. 2012). 

 

To generate projections of male life expectancy at birth, the gap between the life expectancy of 

the two sexes was modelled as 

 

𝐺𝑐,𝑡+1 = {
𝛽0 + 𝛽1𝑙𝑐,1953 + 𝛽2𝐺𝑐,𝑡 + 𝛽3𝑙𝑐,𝑡 + 𝛽4(𝑙𝑐,𝑡 − 75)+ + 𝜀𝑐,𝑡+1,       if 𝑙𝑐,𝑡 ≤ 𝑀 

𝛽5𝐺𝑐,𝑡 + 𝜀𝑐,𝑡+1,
 

 

where 𝑀 is the highest observed female life expectancy, 𝜀𝑐,𝑡~ 𝑡(0, 𝜎1
2, 𝜈1) if 𝑙𝑐,𝑡 ≤ 𝑀 and 

𝜀𝑐,𝑡~ 𝑡(0, 𝜎2
2, 𝜈2)  This model (Raftery et al. 2012) is estimated by maximum likelihood (note that 

no parameters are country-specific). 

 

Projections of female and male life expectancy at birth are converted into age-specific 

projections of mortality rates using a modification of the Lee-Carter method. The classic Lee-

Carter method rewrites the log of the mortality rate for age class 𝑥 at time 𝑡 as 

 

𝑚𝑥,𝑡 =∝𝑥+ 𝛽𝑥𝛾𝑡 + 𝜀𝑥,𝑡, 

 

where ∝𝑥, 𝛽𝑥, and 𝛾𝑡 are parameters to be estimated and 𝜀𝑥,𝑡 is a random disturbance. This 

parameterization is not unique in the sense that there are an infinite number of optimal 

solutions that will give the same forecasts. For this reason two identification constraints are 

added: various options are possible but commonly ∑ 𝛾𝑡𝑡 = 0 and ∑ 𝛽𝑥𝑥 = 1 are used.  

 

Given a set of historical age-specific mortality rates and imposing the constraints above, the 

parameters above can readily be estimated using a singular value decomposition of the 

centered age-specific log mortality rates. To forecast mortality rates into the future, one 

produces estimates of ∝𝑥, 𝛽𝑥, and 𝛾𝑡 using historical data over the observation period 𝑡 =

1, … , 𝑇. Then, assuming that ∝𝑥 and 𝛽𝑥 are constant, forecasts of 𝑚𝑥,𝑡 are obtained by 

forecasting 𝛾𝑡 using a random walk model with drift. It can be shown that the 𝑠-period ahead 

forecast of 𝛾𝑡 is given by  

 

𝛾𝑇+𝑠 = 𝛾𝑇 + 𝑠𝜃 + √𝑠𝜉𝑡 

  

where 𝜃 = (𝛾𝑇 − 𝛾1)/(𝑇 − 1) is the drift term and 𝜉𝑡 is a random disturbance. Finally, the 𝑠-

period ahead forecast of 𝑚𝑥,𝑡 can be computed by substituting 𝛾𝑇+𝑠 into the expression above 

i.e.  



𝑚𝑥,𝑇+𝑠
∗ =∝̂𝑥+ �̂�𝑥(�̂�𝑇 + 𝑠𝜃). 

 

The modification to the Lee-Carter method estimates ∝𝑥, 𝛽𝑥, and 𝛾𝑡 using historical data as 

described above, but then when making forecasts does not use a random walk model to 

generate forecasts of 𝛾𝑡. Rather, a value of 𝛾𝑡 is chosen such that the resulting mortality rates 

𝑚𝑥,𝑡
∗  generated using 𝛾𝑡, when aggregated over all age classes and converted to life expectancy 

at birth, give a result that fits the projected life expectancies generated previously. Note, for 

example, that for a particular forecast period 𝑡 and assuming yearly age classes the forecasted 

life expectancy is given by ∑ 𝑥∞
𝑥=1 (1 − exp(𝑚𝑥,𝑡

∗ )) = ∑ 𝑥∞
𝑥=1 (1 − exp(∝𝑥+ 𝛽𝑥�̂�𝑡)). Given a 

projected life expectancy 𝐿∗, the sole unknown parameter 𝛾𝑡 can be solved for. Forecasts of age-

specific mortality rates follow directly. 

 

It should be noted that the UN probabilistic projections of life expectancy for South Africa and 

other countries with high rates of HIV/AIDS is currently a work-in-progress, and uncertainty 

about the effect of the epidemic on life expectancy is not explicitly modelled at present. The 

UN's 2012 Revision of the World Population Prospects provides a single deterministic 

projection that incorporates the impact of HIV/AIDS on mortality, using a range of assumptions 

around potential improvements in life expectancy e.g. as a result of access to anti-retroviral 

treatments. Trajectories of life expectancy by sex constructed for the probabilistic projections 

are then adjusted in such a way as to ensure that the median trajectory for each country is 

consistent with this deterministic forecast. 

 

Cohort component (aggregation) model 

The age- and sex-specific fertility and mortality rates generated above are used to derive a full 

set of population forecasts using a cohort component projection method. This approach 

stratifies the population of each gender into a number of ascending age classes 𝑥 = 1, 2, … , 𝑁.  

Then number of gender 𝑔 in an age class 𝑥 at time 𝑡 + 1 is given by   

 

For the youngest age class 𝑥 = 1 

 

𝑛𝑔,1,𝑡+1 = ∑ 𝐵𝑔,𝑥,𝑡𝑛𝑔,𝑥,𝑡 + 𝑚𝑔,𝑥,𝑡
𝑥

 

 

For the oldest age class 𝑥 = 𝑁 

 

𝑛𝑔,𝑁,𝑡+1 = 𝑆𝑔,𝑁−1,𝑡𝑛𝑔,𝑁−1,𝑡 + 𝑆𝑔,𝑁,𝑡𝑛𝑔,𝑁,𝑡 + 𝑚𝑔,𝑁,𝑡 

 

While for the remaining intermediate age classes 𝑥 = 2, … , 𝑁 − 1 

 

𝑛𝑔,𝑥,𝑡+1 = 𝑆𝑔,𝑥−1,𝑡𝑛𝑔,𝑥−1,𝑡 + 𝑚𝑔,𝑥,𝑡 

 

where 𝐵𝑔,𝑥,𝑡 is the number of offspring of gender 𝑔 born to females in age class 𝑥 at time 𝑡 who 

are born in the 𝑡-th period and survive to time 𝑡 + 1, divided by 𝑛𝑔,𝑥,𝑡, 𝑆𝑔,𝑥,𝑡 is the survival ratio 

for gender 𝑔 in age class 𝑥 at time 𝑡, and , 𝑚𝑔,𝑥,𝑡 is the net migration for gender 𝑔 in age class 𝑥 

at time 𝑡. These equations are applied recursively to generate population projections. 



 

Quantitative forecasts 

Sample trajectories of total population generated by Monte Carlo simulation are shown in 

Figure 6. 

 

 
Figure 6: Probabilistic projections of total population over the period 2014 – 2050. 

 

Global energy commodity prices 

Overview 

We construct trajectories for international coal, gas, and oil prices from two external sources. 

The IEA produces long-term forecasts of commodity prices as part of its World Energy Outlook, 

the most recent version of which was released in 2014. These forecasts, of coal, oil, and gas 

prices to 2050 under three mitigation scenarios, are perhaps the most widely-used long-term 

forecast of commodity prices, but there are no estimates of the uncertainty around the forecasts 

and are thus, on their own, they are unsuitable for our purposes. We therefore augment these 

values with distributions of coal, oil, and gas prices in 2020, 2035 and 2050 obtained from an 

application of IMACLIM-R, a hybrid energy-economic simulation model (Sassi, Crassous, 

Hourcade, Gitz, Waisman, & Guivarch, 2010). The IMACLIM-R data expresses commodity prices 

for 108 “baseline” scenarios and 108 “mitigation” scenarios, covering a range of assumptions on 

parameters values representing available technology, energy efficiency, lifestyle changes, and 

growth in labour productivity (Rozenberg, et al., 2010).  

 

The Imaclim-R Data source  

IMACLIM-R is a large-scale simulation model of the world economy comprising both static and 

dynamic components, described in detail in Sassi et al. (2010) and used in, for example, 

Rozenberg, et al. (2010). The model uses a static general equilibrium model to annually 



determine relative prices, wages, labour, quantities of goods and services, and value flows. 

Markets for production factors need not clear but goods markets are cleared by unique relative 

prices. These prices are determined by behaviours of agents, modelled in various sub-

components of the full model.  

 

The dynamic part of IMACLIM-R determines how the short-term constraints imposed on the 

static equilibrium model change over time. These changes determine the conditions under 

which static equilibrium will be computed in the next time step, and hence growth. Dedicated 

modules describe the dynamics of various sectors: fossil fuels, electricity generation, residential 

energy end-uses, transportation, agriculture, industry, and services.  

 

The fossil fuel module describes the evolution of coal, oil, and gas prices, i.e. the trajectories that 

we use as inputs to our model, and how these prices are linked to extraction costs that are 

themselves related to cumulated reserves. Individual producers are modelled in detail, 

including resource discovery processes. Oil is divided into six subtypes according to production 

cost, with mark-up rates an increasing function of the ratio of current output to production 

capacity. Subtypes are exploited if they are sufficiently profitable. Regional imbalances in supply 

and consequent market power are explicitly modelled. The IMACLIM-R values express 

international energy prices for oil, gas and coal in 2020, 2035 and 2050, as indexes of 2010 

prices, for 108 “baseline” scenarios and 108 “mitigation” scenarios.  

 

Quantitative forecasts 

 

  

Business as usual 

2020 2035 2050 

Coal IMACLIM-R (avg) 1.04/0.93 1.78/1.07 2.81/1.41 

IEA WEO 2015 (NP) 0.92 1.00   

Wood Mackenzie 0.92 1.22   

Adjustment factor 0.9 0.6 0.5 

Gas IMACLIM-R (avg) 1.10/1.27 1.30/1.43 1.37/1.45 

IEA WEO 2015 (NP) 1.33 1.49   

Adjustment factor 1.15 1.1 0.9 

Oil IMACLIM-R (avg) 1.37/0.96 1.86/1.3 1.97/1.38 

IEA WEO 2015 (NP) 0.92 1.39   

Adjustment factor 0.7 0.7 0.7 

Table 2 shows mean commodity prices obtained from external data sources i.e. IMACLIM-R 

(indicated by the first of the two values in each cell of the table), the IEA WEO 2015 report, and 

the Wood-Mackenzie2 forecasts. The IMACLIM-R forecasted prices are in some cases 

substantially larger than the IEA forecasts. As the IEA forecasts are both more widely used and 

more recent, we adjusted the mean IMACLIM-R values substantially in the direction of the IEA 

values. The sole exception is oil prices in 2020 under business as usual, where the lower 

estimate returned by IMACLIM-R was felt to perhaps be more plausible given recent trends in 

the oil price. Mean values from IMACLIM-R are subjectively adjusted to account for more recent 

information in the IEA WEO 2013 and other sources where available. Values in the IMACLIM-R 

                                                             
2 Wood Mackenzie 2014. Johannesburg Coal Breakfast Briefing – Thermal Coal: Weathering the Storm.  



rows denote indices before/after adjustment, with the multiplier used to make the adjustment 

provided 

  



 

  

Business as usual 

2020 2035 2050 

Coal IMACLIM-R (avg) 1.04/0.93 1.78/1.07 2.81/1.41 

IEA WEO 2015 (NP) 0.92 1.00   

Wood Mackenzie 0.92 1.22   

Adjustment factor 0.9 0.6 0.5 

Gas IMACLIM-R (avg) 1.10/1.27 1.30/1.43 1.37/1.45 

IEA WEO 2015 (NP) 1.33 1.49   

Adjustment factor 1.15 1.1 0.9 

Oil IMACLIM-R (avg) 1.37/0.96 1.86/1.3 1.97/1.38 

IEA WEO 2015 (NP) 0.92 1.39   

Adjustment factor 0.7 0.7 0.7 

Table 2: Mean international commodity (coal, gas, oil) prices, expressed as multiples of 2010 prices, under 

broad “business as usual” and “mitigation” scenarios. 

Since we do not explicitly model international mitigation in the current project, we average over 

the two broad scenarios, “business as usual” and “with mitigation”. We obtain commodity prices 

by applying the indices to 2010 prices:  $75/ton for coal, $7.50/mbtu for gas, and $78/bbl for 

oil. Sample trajectories of commodity prices are obtained by sampling, with replacement, 1000 

sets of prices (i.e. for 2020, 2035, and 2050) from the 108 scenarios, and linearly interpolate 

between the three time periods. The final trajectories are shown in Figure 7 to Figure 9. 

 

 
Figure 7: Probabilistic projections of international coal prices over the period 2020 – 2050. 



 
Figure 8: Probabilistic projections of international gas prices over the period 2020 – 2050. 

 

 
Figure 9: Probabilistic projections of international oil prices over the period 2020 – 2050. 

 

  



Coal prices 

 

Overview 

We conducted elicitation interviews with four experts on the subject of future local coal prices. 

The elicited probability distributions thus covered possible values in the mean growth rate over 

these three. 

 

Summary of qualitative discussions 

 

Historical background and current context 

Originally coalmines were tied geographically and economically to power stations. 

Transportation costs were small, and power stations were purpose-built to use the coal quality 

provided by the satellite mine (most of the coal in the Central Basin is of relatively low quality). 

Traditionally Eskom effectively assumed the risk of coal mining by issuing long-term contracts 

at a fixed rate. These were issued at cost of production plus a relatively small return on capital 

(historically around 9%). Later, the growth of an export market for high-grade (HG) coal led to 

the development of stand-alone export-focussed mines.  

 

These two ostensibly independent systems – electricity generation using low-grade coal, and 

exports of high-grade coal – are in fact linked through the possibility of “washing” coal – a 

process that shifts the distribution of coal quality, with some proportion of coal becoming 

higher quality and some proportion becoming lower quality. The precise proportions and 

quality shifts are complex and mine-specific, but the net effect is that sometimes coal below 

export-grade is washed to export-grade, with the remaining lower-quality “middlings” still 

suitable for power generation.  

 

already paired (i.e. with power stations) coalmines and export-based coalmines were 

strategically grouped, usually by rough geographical proximity, in a bid to optimise operations. 

The optimisation focussed on matching lower-grade middlings with power stations quality 

requirements and minimizing the associated transportation costs. The process included the 

renegotiation of long-term contracts with Eskom – again the agreed-upon price being the cost-

of-production plus a relatively small mark-up.  

 

Almost all of Eskom’s long-term contracts end within the next 5-15 years. Traditionally, these 

contracts have made coal a relatively low-risk, low-return investment, at least in the local 

market. Now, with increased competition for investment from other industries and countries, 

global mining companies are demanding higher rates of return in order to make big capital 

investments – of the order of around 12%. India and China also use low-grade coal in their 

power stations, creating an export market (and hence competition) for coal traditionally 

destined for use by Eskom. Eskom’s strategic dilemma is how to balance short-term contracts, 

which must pay a premium in order to compete with the low-grade export price and are thus 

both more expensive in the long run and subject to fluctuations in that market, and long-term 

contracts, which require huge amounts of capital to be committed.  

 



Complicating Eskom’s contractual choices further, there is substantial political pressure to 

expand mine ownership beyond the big traditional mining companies to “juniors” with strong 

black empowerment initiatives – the mining charter requires 26% black ownership, while 

Eskom policy targets 51%. Smaller “juniors”, however, pay more than the established large 

companies to borrow capital. This increased cost is passed to Eskom and, ultimately, results in 

higher electricity prices. 

 

Influential factors 

As will be clear from the previous background, the main uncertainty is how and over what time 

period Eskom attempts to resolve the strategic difficulties it now faces, in the form of sourcing 

and contracting coal, and how mining houses respond to these initiatives. Vast amounts of coal 

exist in South Africa, but what remains tends to be of low quality and expensive to mine. Mining 

companies will only mine coal if it is profitable to do so; these expenses will have to be borne by 

Eskom if the coal is to be mined at all. The Waterberg area of South Africa contains a vast 

amount of coal but mining operations here could be more difficult and expensive than they have 

been in the Central Basin (suggested costs run as high as R600/t for 22-23 MJ coal without 

capital and transport costs, and R850/t with these costs) 

 

The main factors influencing the future price of coal are the costs of mining it, and the necessary 

return on capital: logistics (mainly transportation costs by road or rail); labour costs; energy 

inputs (in the form of diesel and electricity); capital expenditures and the associated required 

rates of return on capital; environmental and social costs (acid mine draining, 

royalties/licensing, carbon tax); the growth of the low-grade export market; and assorted 

“other” costs (water costs, engineering costs, replacement capital costs, employee housing costs, 

and equipment costs).  

 

Each of these factors is a complex subsystem subject itself to major uncertainties regarding 

their futures. Transportation costs are a function of the geographic proximity of mines and 

power stations, the efficiency to which they are paired (the mines and the power plants), and 

the relative importance of the export market. Expansions to the rail network require large 

capital expenditure, so that these tend to occur in a small number of large increments. The 

timing of these is extremely difficult to predict. Currently labour costs are rising faster than 

inflation, which is unsustainable in the long run. In the Central Basin there is little opportunity 

for technological improvements to reduce labour costs, but some benefits may accrue if open 

cast mining in the Waterberg area occurs. 

 

In the future Eskom is expected to need to offer in the region of 10-15% return on long term 

contracts to compete not only with the low-grade export market but also with copper mines and 

other investment opportunities. This number, however, is subject to the rate offered by other 

investments, and also to changes in risk introduced by, for example, political events. 

Environmental and social costs are expected to increase but the exact magnitude of this 

depends on unknown changes in legislature (for example, including a cash provision for certain 

types of mine rehabilitation not currently required, or increases in royalty fees, which are 

relatively low). Water costs are generally viewed as unimportant relative to other costs, 

although this position is not universally held.  

 



Trends and scenarios 

In the near-term (to 2020), any major changes in the domestic coal price are likely to be caused 

by (a) increases in the cost of capital on renegotiated contracts, once the current ones begin to 

expire; (b) legislation forcing mines to set aside cash provisions for environmental costs; (c) 

legislation increasing government royalties; (d) changes in the export price of low-grade coal; 

(e) transportation costs, expected to remain high but potentially increasing even further as a 

relatively larger proportion of coal is transported by road (any significant rail infrastructure 

would take longer to build). Labour costs are expected to stay relatively constant, increasing at 

1-2% faster than inflation. 

 

To 2035, substantial uncertainties exist around what will occur when the current long-term 

contracts expire, but the expectation is that producers will force Eskom into agreeing to a 

substantially higher return on capital than it has historically paid. Large infrastructure 

construction will be necessary to maintain supplies of coal to Central Basin stations, increasing 

transportation costs. Labour costs are uncertain but are expected to fall back to the inflation 

rate at some point, higher wages being unsustainable. By this time, it is likely that stronger 

environmental legislation will be in place, increasing these costs; and also that greater royalties 

will be extracted. 

 

In the period 2035-2050, the effects of coal mining in the Waterberg, if it occurs, will be most 

keenly felt, and transportation costs increase further, unless power stations are built there. 

Labour costs, if they have not already come down, are expected to do so. Open cast mining in the 

Waterberg is likely to increase diesel costs (at least, with currently known technology). Mines 

that negotiated their contacts around 2030 will again be coming to the end of their contracts, 

and hence will be in the “low return on capital” part of their lifespan, although this will of course 

depend on the length of the signed contracts and will differ from mine to mine. Legislation on 

royalties and/or environmental and social costs is even more likely to have been implemented 

by this point in time. 

 

Quantitative forecasts 

Figure 10 shows the probability distributions elicited from the four experts: 

 

 
Figure 10: Elicited distributions for domestic coal prices (4 experts) 



 

Post-processing 

After reviewing the information gathered from the elicitation and literature, it was felt that 

simply having a single price for all the coal going to power plants in the model would be over 

simplistic and would miss some important factors such as: 

- Some of existing power plants have ongoing fixed price contracts with mines that are 

close to the power plants (mine-mouth existing) 

- There could potentially be cheaper coal in the Waterberg, which may or may not be 

worth transporting to the Central Basin, depending on the relative mining costs and the 

rail transport infrastructure 

- The demand for coal from coal power plants depends on how competitive coal 

electricity is with other options for generating electricity 

- The coal power plants relying on uncontracted coal would be competing with other 

domestic users of coal as well as global markets 

 

The different supply options and their costs can be combined to form a crude supply cost curve 

for coal. The combined demand by coal power plants and other users when applied to the cost 

curve would determine the coal price. The supply cost curve was implemented in SATIM as 

shown in the diagram below.  

 

Figure 11 Implementation of Coal supply Curve in SATIM 

Central Basin
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The diagram shows 2 existing supply and one new supply route for power plants in the Central 

Basin: 

- MINCLE1: Existing mine-mouth (conveyor link) 

- MINCLE2: Existing (trucked/railed) 

- MINCLN: New (trucked/railed) 

The Waterberg has 2 supply routes: 

- MINCLE-A: Existing mine-mouth (conveyor link) 

- MINCLN-A: New (truck/rail/conveyor)  

The supply to coal to liquids plants is modelled with two routes: 

- MINCLS: Existing coal mines supplying Sasol’s existing CTL plant in the Central Basin 

- MINCLS-A: New coal mine to supply future CTL plants in the Waterberg 

 

We also model one existing export grade producing route (MINCLE3) in the central basin. 

Discard coal, is modelled but is not shown in the diagram.  

Over time the existing mines run out and the demand has to be met with production from new 

mines. The export grade and domestic high grade are then produced by washing coal produced 

by MINCLN. The existing rail lines from the Waterberg to the Central Basin and the export line 

to Richard’s Bay as well as options to expand those lines are included.  

 

The uncertainty range that was explored mainly concerns the new Central Basin and Waterberg 

low grade producing mines. The table and chart below show the cost breakdown per ton of 

21MJ/kg for the aggregate of the existing mines in both regions as well as the extreme and 

median cases for both regions. 

 
Table 3 Breakdown of parameters for the coal supply curve and associated uncertainty 

 Central Basin Waterberg 

Con-

veyor 

Existing 

truck & 

rail 

 

New truck & rail 

 

Existi

ng 

 

New Surface New Underground 

 

L M H L M H L M H 

Saleable Production 

Cost 

188 200 200 200 232 106 132 281 595 298 364 592 

Transport 1 100 84 100 100 1 10 17 23 10 17 23 

Capital 46 46 59 59 59 23 27 27 27 68 68 68 

Return on Capital 24 24 129 161 211 33 59 77 96 148 194 241 

Acid mine drainage 0 0 10 30 50 0 10 30 50 10 30 50 

Total 259 370 482 550 652 163 238 432 790 534 672 975 

 

 

The acid mine drainage rehabilitation costs range from 10 to 50 R/ton based on literature 

(Golder Associates,2010) and the expert interviews. The return on capital ranges between 10% 

and 15% also based on literature (Macquarie) and interviews. The capital costs for the central 

basin are based on a capital intensity assumption of around 1800 R/ton of washed product 

(including cost of washing plant), and a life of 30 years for the mine. The capital intensity for a 

new surface mine in the Waterberg is assumed to be around 800 R/ton is based on the Resgen 

Boikarabelo project. 



 

The saleable production cost is a function of labour, energy inputs and other running costs per 

ton mined, and the stripping ratios and washing plant yields. The large uncertainties in the 

Waterberg region is due to the uncertainty around the stripping ratios and washing yields. 

 

The transport cost is a function of the how the coal is transported from the mine to the power 

plant (conveyor/rail/road) and unit cost of transport of each mode. We assume a higher share 

of non-conveyor transport in the Central Basin assuming that the new mines will not be located 

near power plants. The price of diesel is an important factor for road and this is endogenous to 

the model. The assumed ranges for mining and transport are shown in the table below. 

  



 
Table 4 Detailed assumptions on uncertainty on the stripping, washing and transport parameters 

Coal mining 

assumptions 

Central Basin Waterberg 

Convey

or 

 

Existing 

truck & 

rail 

 

Conveyor Existing 

truck & 

rail 

 

Surface Underground 

L M H L M H L M H 

Stripping 

Ratio 

2 1.8 1.8 1.8 1.8 0.6 0.6 1.6 2.5 4.5 4.8 5 

Washing Yield 80% 70% 70% 70% 70% 50% 40% 33% 25% 70% 60% 50% 

Transport assumptions (Share of total coal transported from mine to power plant) 

Conveyor 100% 0% 0% 0% 0% 100% 75% 58% 40% 75% 58% 40% 

Rail 0% 21% 40% 21% 21% 0% 13% 21% 30% 13% 21% 30% 

Road 0% 79% 60% 79% 79% 0% 13% 21% 30% 13% 21% 30% 

 

The resulting average prices for the Central Basin, Waterberg and combined is shown below. 

Figure 13 below shows the result of averaging the costs sampled from the ranges described 

above weighted by the production (shown in Figure 13) of each supply route for each 

corresponding cost scenario. The weighted average matches the combined elicited values 

shown in Figure 10 quite well. 

 
Figure 12 Average coal price seen by coal power plants 

 

 
Figure 13 Production Range for different supply routes 
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Gas prices 

 

Overview 

We conducted elicitation interviews with two experts on the subject of gas prices. Prices depend 

primarily on the type and origin of the gas. An initial discussion constructed 8 reference 

categories: conventional gas deposits, unconventional deposits (shale, coal-bed methane), gas 

imported from SADC countries (by pipeline, by LNG terminal or LNGT, by floating storage 

regasification unit or FSRU), and gas imported from outside the SADC region (by LNGT or 

FSRU). The final model included only shale gas, conventional deposits, and LNG imports, so that 

we focus on these categories here. The elicited probability distributions cover possible prices of 

these different gas types in the reference years 2020, 2035, and 2050.  

 

Summary of qualitative discussions 

Influential factors 

The main factors influencing production costs, and hence gas prices, are the “raw” costs of 

extracting the gas at the wellhead, transportation costs, and the costs of building the related 

infrastructure. Each of these major costs is influenced by a number of factors. In addition, when 

referring to the price of gas for electricity production, the price of gas for alternate uses (e.g. 

heating) is perhaps the key determinant. 

 

Wellhead costs depend primarily on the size, location and geology of deposits, in particular 

whether the deposit is inland or offshore. Transportation costs depend on whether the gas is 

transported by pipeline, LNG terminal, or FSRU. Infrastructure for gas potentially demands 

massive capital investment, so that the determinants of these costs must include the 

complexities of capital arrangements. Pipeline costs depend on the installed capacity (e.g. 24- or 

36-inch pipelines), which is itself a function of expected demand. The cost of this capital 

investment is typically recovered over the lifetime of the pipelines via tariff structures, which 

are a function of whether pipes are running at or near full capacity. When pipelines are 

underutilised per-unit transport costs rise to defray capital costs. 

 

Other price determinants are essentially a consequence of the flexibility of gas in its final uses, 

and the fact that it is a commodity traded for profit. Gas is priced using netback pricing – pricing 

based on subtracting the costs of bringing a resource to the marketplace from all the revenues 

generated by that resource – and hence sales of gas in one market (e.g. electricity generation) 

depend on the value that that gas can fetch in alternate markets (e.g. industrial processes, 

heating). Moreover gas companies must compete with other investment possibilities for 

available capital. Over the longer term, this means that prices are (somewhat) self-regulating. If 

prices drop dramatically, there is an effective oversupply of capital, some of which will be 

withdrawn and invested elsewhere. Demands for return on capital are in turn influenced by 

perceived risk and hence by government policy and political instability. 

 

Trends and scenarios 

Current strategic planning around gas in South Africa centers on the development of large shale 

deposits in South Africa and even larger deposits of conventional gas in Mozambique. Opinions 



are that, given the size of the available deposits and the current political climate, shale deposits 

are highly likely to be developed; though uncertainty exists as to what extent.  

 

Southern Mozambican gas is currently transported via pipeline but this is almost at capacity and 

expansions are planned. Two LNG trains are planned for 2020, with more LNG trains expected 

by 2035. Much larger deposits exist in Northern Mozambique but these are unlikely to be 

transported by pipeline as distances are too great. This possibility becomes even more remote if 

shale gas is developed in South Africa. Transportation via LNG train to Richard’s Bay is more 

likely. Significant infrastructure and hence capital expenditure would be needed for either 

option. Development of this option would require substantial regional co-operation, but the 

possibility of this seems, currently, limited. The Mozambican government has a share of 

ownership of the NM deposits, but this is shared with gas companies who are driven primarily 

by profits. More likely, South Africa will have to compete with other customers for Mozambican 

gas on the open market. 

 

Conventional gas deposits in South Africa has thus far been limited in their scale and impact, 

and this is expected to continue. Coal-bed methane is an expensive, location-dependent source 

with high environmental and water treatment costs. Although potentially quicker to develop 

than shale, it will probably not be an important prospect for South Africa. 

 

Uncertainty ranges on gas price forecasts are relatively constant through time, in contrast to 

other commodities like oil and coal. This is because the gas price is effectively set at the 

marginal producer's cost of production (including capital). This is very likely to be a 

conventional off-shore gas well with a LNG liquefaction plant attached. Crucially, this step in the 

supply curve is very large in terms of global volumes, both now and in the long term, and the 

costs of production for these units are more or less homogeneous. Short-term fluctuations can 

of course occur because of imbalances between supply and demand, but in general these trends 

will be relatively short-lived (i.e. a few years). 

 

Quantitative forecasts 

Figure 14 shows the probability distributions elicited from the two experts. We have quantified 

this assessment using an average of the expert’s assessment of the different gas types at 

[3.9,17.5] for shale and [6.8, 13.7] for imported LNG.  

 



 
Figure 14: Elicited distributions for domestic conventional gas and domestic shale gas (2 experts) 

 

Post-processing 

Between-expert agreement is particularly low for shale gas prices. We suspect that Expert 1’s 

assessed price range for shale takes into account factors endogenous to the SATIM model. In 

particular the upper bound of $8/MMBtu appears to assume that at higher prices shale gas 

would be superseded by other gas types and thus not available locally. These are plausible 

causal explanations, but they can also be accounted for within SATIM. We therefore preferred to 

use the broader uncertainty bounds provided by Expert 2 in the case of shale gas.  

 

The aggregated distribution was converted into annual time series using Algorithm 1 and 3. 

When generating values for the three time points 2020, 2035, and 2050, we impose a moderate 

positive autocorrelation between the values obtained in consecutive periods, by setting off-

diagonal correlations to 0.3 i.e. Σ𝑖𝑗 = 0.3, ∀𝑖 ≠ 𝑗. Sample trajectories generated by Monte Carlo 

simulation are shown in Figure 15. 



 
Figure 15: Probabilistic projections of conventional and shale gas prices over the period 2014 – 2050. 

 

Solar (PV and CSP) investment costs 

 

Overview 

Solar technologies are relatively young, with further advances generally expected to lead to 

lower costs. We generate possible overnight investment costs using a simple learning model, 

using the following four-stage approach.  

 

1. For a baseline solar technology, simulate the total installed capacity at 2030 and 2050, 

using distributions obtained from external sources. 

2. Simulate a learning rate over the period 2014-2030 and 2030-2050, using historical 

learning rates with some additional uncertainty added. 

3. Use standard learning models scaled to a benchmark of 2010 solar costs to calculate 

investment costs over the period 2014-2050. 

4. Calculate investment cost trajectories for other solar technologies by scaling the costs of 

the baseline technology according to current price differentials. 

 

These steps are described in detail below. Since calculations for PV and CSP are very similar, we 

treat these areas together in this section. 

 



Methodology 

Total installed capacity 

The 2014 IEA ETP Report (Table 4.3, p148) gives expected values of total installed capacity of 

PV and CSP in 2030 and 2050 under 2-degree (with or without high renewable activity), 4-

degree, and 6-degree scenarios. We use the 4-degree and 2-degree (without high renewables) 

estimates as lower and upper bounds for our forecasts. These are given, together with estimates 

of recent installed capacity, in Table 5. 

 

  

PV CSP 

2014 2030 2050 2013 2030 2050 

4DS 176 602 1813 3.4 40 185 

2DS 176 1927 4626 3.4 155 646 

Table 5: Estimates of total installed capacity of solar technologies (GW) 

 

We model total installed capacity in 2030 and 2050 as a beta distribution scaled to lie between 

the bounds given in Table 5. The beta distribution allows for a flexible modelling of constrained 

random variables. We model PV capacity as ℬ(2,3) and CSP capacity as ℬ(3,3). The resulting 

scaled beta distributions for total installed PV and CSP capacity are shown in Figure 16 and 

Figure 17 respectively. 

 

 
Figure 16: Probability distributions used to simulate total installed capacity of PV in 2030 and 2050, under 

different mitigation scenarios. Note the log-scaling used on the horizontal axis. 

 



 
Figure 17: Probability distributions used to simulate total installed capacity of CSP in 2030 and 2050, under 

different mitigation scenarios. Note the log-scaling used on the horizontal axis. 

 

Learning rates 

Learning rates for CSP are simulated from a beta distribution ℬ(4,2) scaled to lie between 5% 

and 11%. This gives a symmetric distribution centered on 9%, with 95% of the probability mass 

lying between 5.7% and 10.5%.  

 

Learning rates for PV modules are simulated from a beta distribution ℬ(3,3) scaled to lie 

between 18% and 25%. This gives a symmetric distribution with a median of 21.4%, and 95% 

of the probability mass lying between 19.3% and 23.6%. Learning rates for PV balance-of-

system are simulated from a beta distribution ℬ(3,3) scaled to lie between 9% and 12.5%. This 

again gives a symmetric distribution with a median of 10.8%, and 95% of the probability mass 

lying between 9.6% and 11.9%.  

 

The resulting scaled beta distributions for learning rates on PV and CSP are shown in Figure 18. 

 



 
Figure 18: Probability distributions used to simulate learning rates of CSP and PV components. 

 

Investment costs for baseline solar technologies 

Investment costs 𝑌 are calculated as a function of total installed capacity 𝐶 using a standard 

learning model 

 

𝑌 = 𝑌0 (
𝐶

𝐶0
)

log2(1−𝑏)

 

 

where 𝑌0 and 𝐶0 are investment costs and total installed capacity at some baseline period and 𝑏 

is the learning rate.  

 

For CSP, there is no long-term history with which to reliably estimate learning rates and identify 

baseline periods. We therefore initialise our learning rate using the most recent information 

available to us, the empirical project costs of a CSP plant constructed in South Africa in 2013, 

giving starting values of 𝑌0 = 6.42 and 𝐶0 = 3.4.  

 

The situation for PV is somewhat more complex. Considerable historic data exists for PV module 

costs, from which a learning rate of 20% has been estimated. Prior to 2000, cost predictions 

made using a learning model above with 𝑏 = 0.2 matched observed costs almost exactly, but 

since then costs have decreased both slower and faster than predicted by learning alone in 

2013-2014. Currently, costs are substantially lower than what the standard learning model 

would predict, but we consider this to be unsustainable, as it is largely due to oversupply and 

Chinese government subsidies. We therefore assume that the trajectory of observed costs will 

return to the trajectory predicted by the learning with 𝑏 = 0.2, but that the time taken to 

achieve this return is uncertain.  

 



We operationalize this by forming a weighted average of the learning model above (predictions 

made using 𝑏 = 0.2 and a starting point of, for example, 𝑌0 = 1.39 and 𝐶0 = 70.0) and the 

current PV module cost of 𝑌∗ = 0.8. The final cost is then given by 

 

𝑌 = 𝜔𝑌0 (
𝐶

𝐶0
)

log2(1−𝑏)

+ (1 − 𝜔)𝑌∗ 

 

where 𝜔 is a linear weighting function taking on the value 𝜔 = 0 at the current installed 

capacity and 𝜔 = 1 at some uncertain future time 𝜏 (i.e. the year in which the learning curve is 

rejoined). Noting that the learning model with 𝑏 = 0.2 predicts costs below the current costs 

𝑌∗ = 0.8 at a capacity of 𝐶 = 390 GW, the predicted capacity in 2020. We generate 𝜏 from a beta 

distribution ℬ(3,3) scaled to lie between 2016 and 2027. The resulting distribution is shown in 

Figure 19. 

 

 
Figure 19: Probability distributions used to simulate the total installed capacity at which PV module costs 

regain the historical learning curve. 

 

For PV balance-of-system costs, current costs are 𝑌0 = 0.93 at a total installed capacity of 𝐶0 =

130. Learning rates for the balance-of-system costs, however, are expected to be substantially 

lower than historical learning rates for module costs, as reflected in Figure 18. 

 

Investment costs for other solar technologies 

The investment costs calculated in the previous step are for “baseline” PV and CSP technologies: 

specifically, for PV, Utility with no tracking and, for CSP, a parabolic trough with 6-hour storage 

capacity. Costs for other technologies are calculated as a multiple of the costs of the baseline 

technologies. The multipliers are fixed at their current values i.e. the present-day (2014) cost 

ratio, shown in Table 6 and Table 7. 

  



 

 

PV Technology Cost multiplier 

ERSOLPCF-N (fixed axis) 1 

ERSOLPCT-N (tracking axis) 1.16 

ERSOLPRC-N (commercial rooftop) 1.30 

ERSOLPRR-N (residential rooftop) 2.39 

Table 6: Investment cost ratios of the balance of plant of the different PV technologies, relative to the 

baseline technology, ERSOLPCF-N. 

 

CSP Technology Cost multiplier 

Parabolic trough with 6h storage 1 

Parabolic trough with 0h storage 0.58 

Central tower with 3h storage 0.74 

Parabolic trough with 3h storage 0.79 

Central tower with 6h storage 0.88 

Central tower with 9h storage 1.01 

Central tower with 12h storage 1.15 

Parabolic trough with 9h storage 1.20 

Central tower with 14h storage 1.24 

Table 7: Investment cost ratios of different CSP technologies, relative to the baseline technology, a parabolic 

trough with 6-hour storage capacity. 

 

Quantitative forecasts 

Sample trajectories of investment costs for baseline PV and CSP technologies generated by 

Monte Carlo simulation are shown in Figure 20 to Figure 21. 

 



 
Figure 20: Probabilistic projections of CSP overnight investment costs for the baseline technology over the 

period 2014 – 2050. 

 
Figure 21: Probabilistic projections of overnight investment costs for the baseline PV technology over the 

period 2014 – 2050. 



 

Nuclear costs 

 

Overview 

Anadon, Nemet, & Verdolini (2013) report responses from 67 experts about the future costs of 

nuclear power. Experts provided medians and 10% and 90% percentiles of expected overnight 

capital costs in 2010 and 2030 for Generation III/III+ reactors under business-as-usual 

investment in R&D. Estimates were also obtained for other reactor types under different R&D 

investment scenarios, but these estimates were not elicited from all experts and R&D 

investment scenarios were set to expert-specific “desired” levels and are thus difficult to 

standardise across experts. We therefore did not use these additional assessments. 

 

Quantitative estimates 

Assessments made by US and European experts cannot be directly used as estimates of nuclear 

costs in South Africa due to different material and labour costs. However, as relatively few 

nuclear facilities are built worldwide we might expect future trends and uncertainties in costs 

to be roughly comparable between countries that adopt similar regulation around nuclear 

facilities. We therefore standardised each expert’s assessment by expressing their judgments 

relative to their 2010 median assessments. That is, their 2010 median judgments were set to 

100, and all other judgments were calculated relative to this baseline.  

 

Through this transformation we found that, on average, experts’ 10% percentile assessments 

were 75% of their 2010 median assessments in 2010 and 78% of their 2010 median 

assessments in 2030. Experts’ median percentile assessments were 102% of their 2010 median 

assessments in 2030 (and of course 100% in 2010). Experts’ 90% percentile assessments were 

133% of their 2010 median assessments in 2010 and 135% of their 2010 median assessments 

in 2030. 

 

It is thus clear that experts express relatively little change in uncertainty ranges between 2010 

and 2030, and this might well be reasonably extrapolated to 2050. Conservatively though, we 

made our 2050 assessments 10% more uncertain than 2030, giving a ratio of 0.76 for the 10% 

percentile, 1.02 for the median, and 1.38 for the 90% percentile.  

 

For other key drivers, we assess estimates such that it is “very unlikely” that more extreme 

values occur. Without specifying the precise percentile, we suggest that the resulting judgments 

are more extreme than the 10/90% percentiles used here. We therefore introduce a simple 

mechanism for making the judgments more extreme: before applying the transformation above, 

we first expand the range of each expert’s assessed judgments by assuming a triangular 

distribution with the specified percentiles, and extrapolating this distribution to its minimum 

and maximum values. This results in a triangular distribution with parameters (0.71, 1, 1.41) in 

2010, (0.74, 1.02, 1.43) in 2030, and (0.71, 1.02, 1.47) in 2050. 

 



Finally we apply these distributions to the most recent estimate of overnight investment cost in 

South Africa, the $5800/kW (2012 dollars) given in the 2013 update to the IRP (DOE 2013). The 

final distributions used are: 

 

Year Minimum Mode Maximum 

2010 4109 5800 8200 

2030 4301 5942 8269 

2050 4119 5942 8528 

Table 8: Parameters of constructed triangular distributions for overnight investment cost of Gen. III nuclear 

facility (2012$/kW) 

Sample trajectories of nuclear costs generated by Monte Carlo simulation are shown in Figure 

22. 

 

 
Figure 22: Probabilistic projections of overnight investment costs of a Gen III/III+ nuclear facility over the 

period 2014 – 2050. 

 

 

  



Imported Hydro 

The Southern African Power Pool distributes electricity throughout the region via major 

infrastructure corridors. A number of regional hydro import projects have been identified in the 

recent IRP (DOE 2011) and IRP update (DOE 2013). Given recent developments around Grand 

Inga an additional 3.6 GW is considered, parameterised as per (SNEL et al. 2011). The 

distribution assumed for imported hydro is shown in Figure 23. 

 

 
Figure 23 Assumed distribution for imported hydro 

 



 

Probabilistic projections of baseline GHG emissions 
 

The probabilistic projections described in the previous section are passed as inputs to the 

SATIM-F energy model. Each combination of input trajectories i.e. consisting of a single sampled 

trajectory for each of the key input variables, is passed to SATIM and results in an output 

trajectory for a number of output variables of interest – most importantly GHG emissions but 

also related quantities such as the proportion of electricity production supplied by each fuel 

source, electricity and other prices, etc.. We show results both under the assumption of perfect 

foresight (using an 8% discount rate) and myopic foresight (using a ten-year time interval, with 

five-year overlaps). 

 

GHG emissions 

Figure 24 to Figure 26 provide our main results, respectively showing baseline GHG emissions 

as a raw quantity, in megatons of CO2 equivalent, as the quantity of emissions per capita, and as 

the quantity of emissions per unit of GDP. 

 

The median baseline projection is for CO2 emissions in South Africa to rise slowly to 2030, 

followed by a period of rapidly increasing emissions from 2030 to the end of the forecasting 

period, 2050. Between 2015 and 2030, median emissions rise from 420Mt per year in 2010 to 

550Mt per year in 2025, falling slightly to around 470Mt in 2030. Between 2030 and 2050 

emission levels rise 30% in absolute terms to 650Mt.  

 

While the median baselines may provide a useful single summary, the projections in Figure 24 

clearly show the substantial uncertainty around emissions estimates, particularly in the period 

after 2030. There is relatively little variability between emissions trajectories between now and 

2030: in 2020 95% of the trajectories lie between 420Mt and 460Mt, and in 2030 95% of the 

trajectories lie between 420Mt and 550Mt. Beyond 2030 uncertainty rapidly increases. In 2035 

a 95% prediction interval for emissions is for them to lie between 420Mt and 640Mt; this 

widens still further to between 420Mt and 1000Mt in 2050.  

 

The overall trend is thus for emissions to rise slowly to 2030; thereafter the most likely 

outcome is for emissions to continue to rise, with substantial uncertainty about the rate of this 

rise. In most cases, the post-2030 rise in emissions is greater than pre-2030, giving the 

appearance of an exponential growth in emissions. In a number of simulated trajectories the 

post-2030 growth in emissions levels is indeed remarkable – note, for example, the higher of the 

two blue lines in Figure 24, which shows the trajectory such that there is a 10% chance of 

emissions exceed the values indicated by this trajectory. The general increase, however, is not 

guaranteed under a baseline scenario. In as many as 10% of our simulated trajectories there is 

no growth or even a reduction in emissions from 2030. 

 



 
Figure 24: Probabilistic projections of CO2 equivalent produced by South Africa over the period 2010 – 2050, 

under perfect foresight. 

Per capita emissions are also expected to rise, though less than absolute emissions. Substantial 

uncertainty exists in the forecasts, particularly beyond 2030. Median per capita emissions 

remain roughly the same as present-day values of 8t of CO2 equivalent per capita until 2035, 

after which they rise steadily to just over 10t per capita in 2050. As with absolute emissions the 

distribution of per capita emissions is slightly skewed to the right, so that values in the right tail 

i.e. relatively large per capita emissions, tend to be further from the median, and hence more 

extreme, than values in the left tail i.e. relatively small per capita emissions. The upper extreme 

of possible per capita emission would appear to be around 8.4t per capita in 2020, 10t per 

capita in 2035, and 15t per capita in 2050. Lower extremes are 8t per capita, 7.6t per capita, and 

7.6t per capita in 2020, 2035, and 2050 respectively.  

 

 

 
Figure 25: Probabilistic projections of CO2 equivalent per capita produced by South Africa over the period 

2010 – 2050, under perfect foresight. 

 



GHG emissions per unit of GDP fall consistently throughout the forecast period, as a result of 

both increased activity in the tertiary sector and reduced use of coal for industrial activities. 

Decreases in CO2 emissions are close to linear over most of the period, and subject to slightly 

less uncertainty than the two GHG emission indicators considered above. Nevertheless 

substantial uncertainty still exists, particularly after 2030. Median forecasts are for CO2 

emissions per dollar of GDP to drop from present levels of 0.66kg/$GDP to 0.46kg/$GDP in 

2035 and 0.37kg/$GDP in 2050; 95% prediction intervals around the median projections are 

(0.65; 0.68) in 2020, (0.42, 0.52) in 2035, and (0.28, 0.48) in 2050. 

 

 
Figure 26: Probabilistic projections of CO2 equivalent per unit of GDP produced by South Africa over the 

period 2010 – 2050, under perfect foresight. 

Changes in GHG emissions are strongly associated with economic growth. However, the 

strength of the relationship is perhaps not as strong as might be expected. Figure 27 shows the 

nature of this relationship in more detail, plotting GDP growth against CO2 emissions. 

Conditional distributions of CO2 at different levels of GDP growth can be examined by taking 

vertical cross-sections through the scatterplots – these distributions show substantial 

variability across all levels of GDP growth. For example, at an average GDP growth rate of 3.5%, 

emissions levels (ignoring outliers) might be anywhere between 450 and 950Mt of CO2 

equivalent in 2050. 

 

 



 
Figure 27: Scatterplots showing relationships between average GDP growth and CO2 production in 2050, 

under perfect foresight. Individual points represent pairs of GDP growth/CO2 values i.e. the values of GDP 

and CO2 in a single time period (five years). Contours plot lines of equal probability. 

Finally, we show the contributions of different sectors to GHG emissions in 2050. These are of 

course uncertain, so that Figure 28 shows possible values in the form of probability 

distributions. Similar figures (not shown here) are available for other points in time. Two 

noteworthy features of Figure 28 are that the power sector accounts for the majority of 

emissions, with other sectors contributing smaller but still significant amounts; and that 

emissions from the power sector, are subject to much more uncertainty than emissions from 

other sectors. 

 

 
Figure 28: Histograms showing possible distributions of sectoral contributions to overall CO2 equivalent 

production in South Africa in 2050, under perfect foresight. 

 

Contributions of fuel types 

The previous section has shown that uncertainty around baseline GHG emissions in South Africa 

is largely due to uncertainties around GHG emissions in the power sector i.e. electricity 

generation. These uncertainties relate in turn to the relative mix of fuels used to satisfy South 



Africa’s demand for power. This section describes our results on these aspects – probabilistic 

projections of the composition of fuels used for electricity production. 

 

Figure 29 to Figure 32 show the projected share of electricity production generated by each of 

five technologies: coal, gas, nuclear, and solar (PV and CSP technologies). 

 

Figure 29 and Figure 30 show that the primary source of uncertainty in setting a single baseline 

trajectory for GHG emissions in South Africa is the extent to which gas replaces coal in the 

production of electricity. Under a median trajectory, coal is expected to remain by far the 

dominant fuel source for electricity production. Although it declines from its current 

contribution of 85% to around 70% in the period 2025-2030 from the contribution of regional 

hydro projects, this latter level is maintained for the remainder of the forecast period. In the 

median gas trajectory, gas is hardly exploited at all and its contribution to electricity generation 

remains below 5%. However, enormous uncertainties exist around these median projections. 

 

The most important aspect of this uncertainty is that the distribution of coal’s contribution is 

skewed to the left while the distribution of gas’ contribution is skewed to the right. Thus while 

the median trajectory for coal predicts that it contributes 70% of South Africa’s electricity, there 

is at least a one-in-ten chance that its contribution is less than 25%. Similarly while the median 

trajectory for gas predicts that its share is below 5%, there is at least a one-in-ten chance that its 

contribution is above 60%.  

 

 
Figure 29: Probabilistic projections of the share of electricity production in South Africa contributed by coal 

over the period 2010 – 2050, under perfect foresight. 



 
Figure 30: Probabilistic projections of the share of electricity production in South Africa contributed by gas 

(left) and by fossil: coal + gas (right) over the period 2010 – 2050, under perfect foresight. 

The primary uncertainty around shale gas is whether and when it is exploited at all. Most of the 

trajectories in Figure 30 suggest that if gas is taken up at all it quickly becomes, if not the 

dominant fuel source for electricity generation, then at least a significant contributor. 

The combined coal and gas share is around 70% in 80% of the cases as shown on the right. 

 

Figure 31 shows that under baseline assumptions, PV technologies do not become major 

contributors to South African electricity production. The median projections are for nuclear to 

decline as a proportion-of-total, as no new plants are built, and for PV to increase marginally but 

remain a minor contributor. Relatively little uncertainty exists around these projections. 

 

Concentrated solar power (CSP) in contrast is subject to substantial uncertainty. Under a 

median projection, it contributes little or nothing to electricity production. However at each 

modelled time-point from 2030 i.e. each five-year interval from 2030, there is a reasonable 

chance that the technology becomes a significant contributor from that time-point on. Thus for 

example there is a 10% chance that CSP is taken up in 2035, and if this happens it increases its 

contribution of electricity generation to around 10% in 2050. Extreme scenarios see CSP 

contributing as much as 20% of South Africa’s electricity needs, but these should be regarded as 

extreme (i.e. one-in-a-thousand) events. 

 
 



 
Figure 31: Probabilistic projections of the share of electricity production in South Africa contributed by PV 

technologies over the period 2010 – 2050, under perfect foresight. 

 
Figure 32: Probabilistic projections of the share of electricity production in South Africa contributed by CSP 

technologies over the period 2010 – 2050, under perfect foresight. 

 

   

   

 
  



Alternate Model sensitivity analysis 

Myopic model results 
Figure 33 shows the results for the base model (perfect foresight) compared to the myopic 
model (limited foresight) with 10 year periods and 5 year overlaps. The myopic model has only 
marginally higher emissions compared to the perfect foresight model, and exhibits very similar 
variance in the emissions in 2050.   
 

 
Figure 33: The CO2 emissions box plot for the Baserun model with perfect foresight (left), and the Model with 
limited foresight (right). Red dots represent the mean. 

This slight increase in emissions is the result of slightly higher coal share of electricity 
production in 2050 as indicated in Figure 34 below.  
 
 



 
Figure 34: Coal share of electricity production in the perfect foresight model and the myopic (limited 
foresight) model compared.  

The distribution of emissions  by each sector is given in the figures below. The results show that 
there is very little difference in the pattern between the two variations of the model.  

 
 
Figure 35: The density plot of emissions by sector for the base model (perfect foresight) in 2050 (left), and 
for the Myopic model (limited foresight) – right. 

 
 

Discussion 
The results between the perfect foresight and myopic models are very similar. The myopic 
model exhibited slightly higher emissions compared to the perfect foresight model, as the model 



invested slightly more in coal power. Also notable is the spread of coal contribution to the 
electricity sector is smaller than in the perfect foresight model.  
 
However, it should be noted that in general, a myopic model would most likely show larger 
changes where prices fluctuate widely or where policy interventions result in price changes 
(such as carbon taxes). In this model the prices of commodities do not exhibit  a large enough 
fluctuation to induce significant changes between the perfect foresight and myopic models. 
Further work is needed to test the model under policy scenarios which alter commodity prices 
or other constraints such as a carbon price that changes over time.  
 
 
 

Alternate Discount rates 
 
To test the models sensitivity to the discount rate which is set to 8% in the base run, two other 
alternative discount rates where analysed and compared: a low discount rate scenario of 5%, 
and a scenario for a higher rate of 11%. 

Discount rate results 
Figure 36 shows the total CO2 emissions in 2050 for the low and high discount rates compared 
to the original base run model.   

 
Figure 36: Comparison of CO2 emissions in 2050 for the discount rate sensitivity analysis 

Noticeably the higher discount rate of 11% has generally lower emissions in CO2, despite the 
fossil fuel share of electricity production being higher than the other two scenarios as indicated 
in Figure 37.  The lower emissions despite higher fossil fuel share in electricity production is a 
result of  a higher use of gas in the model as indicated in plot 2 of Figure 37 below.  
 



 
 

 
Figure 37: The share of fossil fuels (left) and gas (right) in electricity for the model using 5%, baserun 8%, 
and 11% (red, green, blue plots).  

The increased use of gas to generate electricity at the higher discount rate is a result of both 
Shale gas and LNG competing well with coal as indicated in LCOE’s in Figure 38 below.  

 



 
Figure 38: The density plots of the LCOE’s for each of the main electricity generating technologies in the year 
2030. Top left is 5% discount rate model, top right is the 11% discount rate and bottom figure is the baserun 
model (8% discount) model. Note that density plots have an area of 1 for each technology, and please note 
the scales on the y axis are not uniform between these figures.    

Also of interest is the emissions by sector in 2050, presented in Figure 39. Of note is that 
refineries are most likely to drop out almost entirely from the contributions to emissions by 
2050 in a higher discount rate scenario. 
 



 

 
Figure 39: The density plots of emissions contributions by sector for South Africa in 2050, in the 5% discount 
rate model top left, the baserun (8% discount rate) in top right, and 11% discount rate model bottom.  

 
The 11% discount rate has effect of lowering the CO2 emissions in the country as a result of 
more use of gas power and refineries contributing very little toward CO2 emissions as compared 
to the baserun model of 8% discount rate.  
 
A lower discount rate of 5% lowers the overall share of fossil fuels in the electricity generation 
system by 2050 and increases the spread for fossil fuel share of the power sector. While the 
contribution to emissions from the power sector is generally lower, the contribution to 
emissions from refineries is higher as indicated in Figure 39. 
 
 

  



Discussion and conclusions 
 

Summary of approach  
 

The objective of the project on which this report in based is to construct a baseline projection 

for GHG emissions in South Africa to 2050, taking into account the inevitable uncertainty that 

must accompany such projections. To this end the following approach was followed: 

 

 We base our approach on the South African TIMES model (SATIM), a partial equilibrium 

linear optimisation model that selects a mix of energy sources to meet a given demand 

for useful energy at least cost. GHG emissions are obtained as output of the optimisation 

model. In doing so, we abstract the task of assessing uncertainty about GHG emissions 

into the easier tasks of assessing uncertainty about (a) energy demand and (b) which 

fuels are used to meet this demand.  

 Uncertainty about energy demand is in turn decomposed into uncertainty about various 

determining factors, specifically population growth, economic growth, and differing 

growth rates across economic sectors. Uncertainty about the fuel mix used to meet 

energy demand is decomposed into uncertainty about the prices of the various fuel 

sources (e.g. coal and gas) and the costs of energy technologies (e.g. renewables in the 

form of PV and CSP). 

 We assess uncertainty about each of the eight key input variables using a combination of 

(a) a review of the literature, (b) elicitation from national experts, (c) further modelling. 

External sources are used for quantities such as population growth, international 

commodity prices, and local fuel prices that are expected to remain tightly coupled to 

international prices (e.g. nuclear), for which comprehensive probabilistic forecasts 

already exist and are widely used. Where these are unavailable (e.g. for local economic 

growth and local commodity prices) we obtained probabilistic forecasts from a small 

number of local experts, using elicitation procedures drawn from established best 

practices.  

 In cases where quantities were assessed by expert elicitation, a degree of additional 

modelling is required to bring these into a form suitable to be used as inputs to SATIM. 

Primarily this involved interpolation between key time-points used in the elicitation, 

since eliciting full projections from experts was not possible.  

 Probabilistic inputs are passed to SATIM. Each combination of input trajectories results, 

deterministically, in a set of trajectories for each output of interest: primarily GHG 

emissions but also related quantities such as how those emissions are distributed 

between sectors and electricity prices. The approach we follow is a Monte Carlo 

simulation. Taken as a whole, the set of 1000 possible input trajectories results in a set 

of 1000 possible output trajectories, from which distributional outputs can easily be 

obtained.  

 An alternate model formulation is explored through the use of the optimisation using 

myopic foresight instead of perfect foresight, and different discount rates. 

 

The primary limitations of our approach are the following:  

 



 SATIM dependency: our approach depends heavily on the underlying SATIM model, in 

terms of how energy inputs are linked to energy outputs. The model has been developed 

over a number of years specifically for the South African context, and is perhaps the 

most comprehensive model of national energy production and consumption available at 

the current time. Nevertheless the model assumes that fuels are selected so as to 

minimize cost, which may not reflect the complexities of decisions taken in a world in 

which other socio-political pressures exist, especially on the demand side. Fundamental 

or extreme changes to the system from climate impacts e.g. dramatic rises in sea level, 

are not taken into account by SATIM. 

 Independence of input variables: Although autocorrelation within each key input variable 

is modelled explicitly, correlations between input variables, except in the case of the 

international fuel prices for coal gas and oil, and in the case of population and GDP, are 

assumed to be zero. That is, we sample independently when constructing combinations 

of input variables. The difficulty in this regard is simply finding experts with sufficient 

knowledge to assess these correlations. Experts exist with subject areas, but the 

assessment of inter-variable correlations requires an extremely broad and deep 

knowledge, encompassing all the input variables. The exceptions here are international 

commodity prices (coal, gas, oil), for which correlational information is available. 

 Biases in human judgment: Although highlighted several times, it is worth repeating that 

long-term forecasts are notoriously fallible, and susceptible in particular to biases 

anchoring these forecasts to the current status quo. Quite simply, in many applications 

of long-terms the observed reality turns out to be well outside of expected bounds. Thus, 

any long-term forecast must be interpreted and used with caution. 

 

Summary of key results  
 

Our primary results are as follows: 

 

1. Most baseline projections of CO2 emissions in South Africa rise slowly to 2030, followed 

by a period of more rapid increase of emissions from 2030 to the end of the forecasting 

period, 2050. Enormous uncertainty exists around the precise quantity of emissions, 

however, particularly after 2030. Our results indicate that 95% of trajectories lie 

between 445Mt and 475Mt CO2 equivalent in 2020; between 415Mt and 635Mt in 2035; 

and between 420Mt and 1000Mt in 2050. The median projection is for emissions of CO2 

equivalent to rise from 420Mt per year in 2010 to 500Mt per year in 2035 and 670Mt in 

2050. Full projections are given in Figure 24. 

2. Our results show that a no climate policy scenario has wide ranges of GHG emissions, 

but with median projections rising throughout, but moderately: from 420Mt CO2-eq  per 

year in 2010 to 500Mt per year in 2035 and 670Mt in 2050.  Median projections should 

be interpreted cautiously. For example, the median projection of 500 Mt CO2-eq  in 

2035 is within the ‘peak, plateau and decline’ (PPD) trajectory range in national climate 

policy (RSA 2011), which is PPD range is 398 to 614 Mt CO2-eq for 2035. The range in 

our modelling projects GHG emissions from 415Mt and 635Mt in 2035.  We emphasise 

the high level of uncertainty in absolute emission projections, especially further into the 

future, after 2030. It is more advisable to consider ranges, than the median values.  



3. Per capita emissions are also expected to rise, though by less than absolute emissions. 

Substantial uncertainty again exists in the forecasts, particularly beyond 2030. Our 

results indicate that 95% of trajectories lie between 8t and 9t per capita in 2020; 

between 7t and 11t per capita in 2035; and between 6.5t and 17t per capita in 2050. 

Median per capita emissions remain roughly the same as present-day values of 8.5t per 

capita until 2035, after which they rise steadily to just over 10t per capita in 2050. Full 

projections are given in Figure 25.   

 

4. Emissions intensity, that is GHG emissions per unit of GDP, falls consistently and 

approximately linearly throughout the forecast period. Nevertheless substantial 

uncertainty still exists, particularly after 2030. Our results indicate that 95% of 

trajectories lie between 0.66 and 0.69kg/$GDP in 2020; between 0.39 and 0.55kg/$GDP 

in 2035; and between 0.26 and 0.47kg/$GDP in 2050. Median forecasts are for CO2 

emissions per dollar of GDP to drop from current day levels of 0.67kg/$GDP to 

0.47kg/$GDP in 2035 and 0.38kg/$GDP in 2050. Full projections are given in Figure 26. 

 

5. Uncertainty around baseline GHG emissions in South Africa is largely due to 

uncertainties around GHG emissions in the power sector i.e. electricity generation. In 

nearly all projections, electricity production accounts for the majority of GHG emissions, 

but the precise quantity of emissions is subject to enormous uncertainty, substantially 

more than emissions in any other sectors. These results are shown in Figure 28. 

 

6. Uncertainty around GHG emissions due to electricity production relate in turn to the 

relative mix of fuels used to satisfy South Africa’s demand for power. The primary 

uncertainty is the extent to which gas replaces coal in the production of electricity. Our 

results show that 95% of trajectories indicate that coal contributes between 45% and 

75% and gas between 0% and 38% of electricity produced in 2035, from their current 

shares of 85% and 0% respectively, and that coal contributes between 15% and 85% 

and gas between 0% and 75% in 2050. That is, almost anything can happen: although 

unlikely, gas may almost entirely usurp coal as the main source of South Africa's 

electricity. Median coal shares decline from 85% in 2020 to 70% in 2030 and remain at 

this level to 2050. Median gas shares remain near zero throughout the forecast period.  

Full projections are given in Figure 29 and Figure 30. 

 

7. Nuclear and PV technologies do not become major contributors to South African 

electricity production. Most projections are for nuclear to decline as a proportion-of-

total, as no new plants are built, and for PV to increase marginally but remain a minor 

contributor. Concentrated solar power (CSP) is subject to substantial uncertainty. Our 

results show that 95% of trajectories indicate that CSP contributes between 0% and 5% 

of electricity produced in 2035, and between 0% and 15% in 2050, although the median 

projection is for CSP to contribute little or nothing (less than 1%) throughout the 

forecast period. Full projections are given in, Figure 31 and Figure 32. 

 
8. The uncertainty in the baseline seems robust to the different model formulations, in 

myopic vs perfect foresight and the different discount rates, where little variation is 

observed. 

 



Policy implications 

 

Baseline forecasts play an important role in strategic planning around responses to climate 

change, providing inputs into discussions around fair allocations among countries and 

responsibility for mitigation actions. Drawing out the detailed policy implications of the 

baseline projections provided here is beyond the scope of the current project, but it is not 

difficult to see the challenges that South Africa faces in this regard. South Africa is in a fairly 

unusual situation: it depends heavily on coal for power generation, and under “business as 

usual” policies such as assumed here, this dependency is projected to continue for some time, 

perhaps to 2050. At the same time it has a population that is projected to grow substantially in 

size, coupled with relatively modest economic growth. Improving the living conditions of a 

substantial proportion of the population is likely to be a challenge, even under a “business as 

usual” dependency on coal.  

 

Further research

 

The current project is far from a definitive statement of South Africa’s baseline projection for 

GHG emissions, rather it should be seen as a first step along this process. The following areas 

are perhaps the most effective areas to direct future efforts: 

 

 Our results show that uncertainty increases exponentially over time, and that for some 

key variables (e.g. the relative mix of coal and gas for electricity production) almost 

anything can happen over a period of decades. Median projections can be calculated, but 

are no prediction of the future. We stress again that this uncertainty is “baseline” 

uncertainty i.e. under the assumption of relatively unchanging policies. Assessments 

incorporating policy uncertainty will be even more variable. As a result, baselines need 

to be regularly updated, perhaps at intervals of no more than five years. 

 

 Related to the above point, our forecasts of GHG emissions are based on forecasts of key 

input variables, obtained from a variety of sources. These too will change over time, and 

updates should be incorporated into the baseline forecasts when information on 

changes in input variables become available. This also motivates for the regular 

updating of baseline projections. 

 
 The uncertainty in CO2 per GDP is much narrower than uncertainty regarding the 

absolute level of CO2 emissions. The reason for the narrower range is that the variability 

caused by different GDP growth scenarios is partly taken away. This might make 

emissions intensity an attractive metric for mitigation commitments. The absolute result 

in future GHG emissions would still, however, be subject to uncertainty about the GDP 

projection assumed at the time.  

 

 Our projections are based in places on the assessments obtained from only a small 

number of experts. Eliciting information from a greater number of experts would 

provide a greater degree of confidence in the results. 

 



 Our results indicate that perhaps the key uncertainty in the setting of baseline GHG 

emissions in South Africa is the relative price of coal to gas. This is due to the large share 

of emissions from electricity generation. Particular emphasis could be placed on 

modelling these two quantities. 

 
 The uncertainty explored focuses on supply technologies and fuel prices, but 

uncertainties also exist in the future cost and performance of demand technologies such 

as advanced air-conditioning and electric cars, as well as the uncertainty in the costs of 

the supporting distribution infrastructure required for the mass uptake of new fuels for 

South Africa, such as natural gas in the transport, residential and commercial sectors 

and electricity  in the transport sector. 

 
 The tool developed in this project was only used to look at a no climate policy scenario. 

However, with very little further modification it could be used to look at a whole host of 

climate policies ranging from CO2 prices, or “no more coal power” policies, or even 

looking for other robust climate policies, which would be very interesting to do. 

 
 More detailed sensitivity analysis could be carried out to determine the more sensitive 

parameters and where more effort could be put to try and reduce if possible the 

uncertainty. 

 

 As mentioned, our model assumes independence between most of the key input 

variables. Further work might explore the effect that correlations between input 

variables might have on results, as well as effective ways to measure these complex 

correlations. 
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Appendices 
 

Pre-elicitation documentation 
 

Introduction to probability  
 

As this project will be assessing your knowledge or beliefs in a probabilistic form, we should 

first spend a moment defining what a probability is. Simply put, 

 

The probability of an event is a measure of how likely it is to occur 

 

A probability of 0 means that the event is absolutely certain not to occur, while a probability of 1 

means that the event will occur with absolute certainty. The central value, 0.5, means that the 

event is as likely to occur than not to occur. 

 

A fundamental law of probability is that sum of the probabilities across all distinct outcomes 

must equal 1. By “distinct” we mean all outcomes that cannot occur together – the term for this 

is mutually exclusive. In the case of an event, either the event does occur or it does not. These are 

the only two possible outcomes, and their probabilities must therefore sum to 1. 

 

Often, we deal with quantities that can take on a range of values, rather than a single event. 

Whereas an event either does or does not occur, a quantity can take on any of a range of 

possible values.  

 

An uncertain quantity is called a random variable 

 

If the random variable can take on any value within some range, it is called continuous. Take, for 

example, the total weight of coal reserves that remain on Earth. This quantity could in theory 

take on any positive value, although clearly it would be very many tons. The South African 

population, on the other hand, can only take on certain distinct values (any whole number), but 

cannot take on values between these. Random variables like this are called discrete.  

 

For continuous random variables, a fact that surprises many people encountering probability 

for the first time is that the probability associated with any one particular value is zero. This is 

because there are in theory an infinite number of possible values that could occur, so that the 

probability of any single outcome occurring must be vanishingly small – zero.  

 

Although we cannot express the probability that a random variable takes on a single value, we 

can assess the probability that it lies between two distinct values. Often, it is easier to just assess 

the probability that the random variable is less than some value (which we label 𝑥), for a 

number of possible 𝑥 values, and to work out the probability for any interval by doing some 

simple calculations. For example, if you think that there’s a probability of 0.7 that your friend 

weighs less than 70kg, and a probability of 0.3 that they weigh less than 60kg, then clearly the 

probability that they weigh between 60kg and 70kg is 0.7 – 0.4 = 0.3.  

 



Mathematically, we write the statement that “the random variable is less than some value 𝑥” as 

Pr [𝑋 ≤ 𝑥]. Random variables are usually denoted with capital letters (so 𝑋 is a placeholder for 

the random variable we are interested in), while lowercase letters indicate specific values that 

the random variable can take on. In fact, the difference between “event-based” and “interval-

based” probabilities is not as big as it may seem. We can easily think of the outcome 𝑋 ≤ 𝑥 as an 

“event” – either the random variable is less than or equal to 𝑥, or it is greater than 𝑥.  

 

If we assess Pr [𝑋 ≤ 𝑥] over all possible values of 𝑥, then we end up with a function called the 

cumulative distribution function (or CDF) of 𝑋.  

 

The cumulative distribution function or CDF is a critical piece of information that describes, 

in full detail, what values are more or less likely to occur. 

 

In practice, it will be impossible to assess the CDF of 𝑋 for all values of 𝑥, so we usually do the 

assessment for a few 𝑥 values and make some assumptions about what happens between these 

values. This is in fact what will happen during the elicitation process you will be guided through. 

 

It is now time to take a closer look at uncertainty, and the kinds of uncertainties that are 

amenable to modelling with probabilities. We’ll mainly talk about two different interpretations 

of probability: one called frequency probability, the other personal (or subjective) probability. 

 

The frequency definition of probability says that the probability of an event is the 

proportion of times it occurs in a long sequence of repeated trials 

 

Most introductions to probability start with a frequency interpretation of probability, which 

says that the probability of an event is the proportion of times that it occurs in a long sequence 

of repeated trials. For example, the probability of a coin landing heads-up is 0.5, because that is 

the proportion we would expect to observe if we flipped the coin many times.  

 

This focus on frequency probabilities is unfortunate, because it excludes much of the 

uncertainty that we experience in daily life. Often, we feel uncertain not because we are faced 

with a fundamentally random process like a coin flip that can be repeated many times. We feel 

uncertain because we face a once-off, unrepeatable situation about which we have limited 

knowledge. This process may not even be random; the answer may be potentially knowable, at 

least in theory. It is just that, in our current state, we do not know what that answer is.  

 

In cases like these, the frequency interpretation of probability breaks down, and if we want to 

make probability statements at all (which we do) we must use a different interpretation of 

probability called personal or subjective probability.  

 

The personal definition of probability says that a probability of an event represents 

someone’s degree of belief that the event will occur. 

 

In this interpretation probability represents someone’s degree of belief in an uncertain 

statement – like the occurrence of an event. The same basic rules apply – probabilities must be 

between zero and one, must sum to one, and so on – but we are allowed to make reference to a 



broader class of events, including once-off events for which repeated experimentation is not 

possible. 

 

Many people who have been exposed to some probability training are initially 

uncomfortable making personal probability judgments. 

 

This is particularly true of scientists, for whom “subjectivity” is often viewed negatively, with 

associations of being insensitive to evidence and sensitive to irrelevant emotions through 

hidden biases and prejudices. While such feelings can be difficult to set aside, they are based on 

a rather limited view of judgment in general, and elicitation in particular. There are a number of 

things to bear in mind when participating in an elicitation process: 

 

There is no objectively “correct” answer to almost any elicitation question 

 

Often, the people asked to give their opinions experience discomfort because they do not know 

what will happen – they don’t know the “correct” answer. We wish to be clear that your opinion 

has been sought because there is no single accepted answer to the question asked of you. Any 

answer is necessarily yours – although it can and should be informed by the available evidence, 

it is ultimately your opinion that counts. The range of answers that you give, and the 

probabilities that you associate with them, should reflect your degree of uncertainty in the 

outcome you have been asked to assess.  

 

Your opinion may change during the elicitation process 

 

There is a broad consensus from research on human judgement that elicited probabilities are at 

least partly constructed during the elicitation process. Probabilities, like many other kinds of 

judgements, are not pre-formed quantities that exist in someone’s mind waiting to be “read off” 

by a trained assessor. The way in which questions are asked and answered can and does change 

the answers given. We will discuss these and other findings from research on the psychology of 

human judgement in a companion document. We stress once again that there is no objectively 

“correct” answer to almost any elicitation question, and that your opinion may and should 

change as you consider and weigh up different sources of evidence.  

 

The objective of good elicitation is to eradicate negative biases and to assist you in a 

rational assessment of your own knowledge and experience 

 

The fact that there is no “correct” answer doesn’t mean that any answer is equally good – a 

common criticism of “subjectivity”. Indeed there is a clear consensus about what makes 

probability judgements “good”, the most important of which are that they should accurately 

reflect the true beliefs of the person being assessed while remaining consistent with the basic 

laws of probability. There is also good agreement on what kinds of assessment procedures have 

the best chance of achieving these aims, as we also describe in an accompanying document. The 

assessment process we follow closely follows the best available practices. 

 

Practical elicitation nearly always involves variables that are uncertain because of limited 

knowledge rather than fundamental randomness 

 



Finally, the use of personal probability is an unavoidable aspect of the kind of work we are 

doing. The very fact that peoples’ opinions are being sought almost guarantees that the process 

in question is uncertain at least partly because knowledge is limited rather than because the 

process is fundamentally random. It would not make much sense, for example, to consult an 

“expert” about a coin flip. Although putting a number on your judgments may be uncomfortable, 

the alternative is to leave these judgements vague and unspecified. This makes them far more 

open to manipulation and far less likely to be useful inputs to later policy discussions and 

decision-making. 

 

Introduction to thinking about probability 
 

This document gives a short, informal summary of what is currently known about how people 

go about thinking about uncertainty, and in particular how they make probability judgements. 

By probability judgements we mean informal statements about how likely or unlikely various 

types of events are, as well as the kinds of explicit judgments about numerical probabilities that 

you will make later on. Our aim in this summary is to highlight some common pitfalls that 

people fall into when thinking about probabilities. As we’ll discuss, knowing about these pitfalls 

can help to reduce them (but, unfortunately, rarely to avoid them completely!).   

 

We hope that by reading this document the probabilities you end up giving will accurately 

reflect your true beliefs. 

 

Up until the mid-1960’s the general view was that people were relatively good at translating 

their personal experiences and observations into probability judgements. When asked to 

estimate descriptive statistics like an average, probability, or proportion, people generally did 

this with reasonable accuracy. But within a decade this view had been almost entirely shattered 

and replaced by a very different one. Using a series of simple but extremely convincing 

experiments, researchers found that 

 

When people judge probabilities or estimate uncertain quantities, they employ a variety of 

simple strategies that can sometimes lead to systematic errors 

 

A number of points are worth making early on here. Firstly, just because judgements can be 

flawed does not imply that they always will be flawed. Indeed, much of the subsequent research 

on judgements has focused on identifying those conditions that differentiate good and bad 

judgements, and this research forms the backbone of good elicitation practice. Second, the kinds 

of errors we talk about are “systematic”, meaning that they generally operate in a single 

direction, rather than “random” errors scattered around a point. This is important, because 

while random error is largely something we just have to live with, systematic errors can 

sometimes be avoided or corrected for once they have been identified. And thirdly, “simple 

strategies” should not be viewed negatively. We all operate with limited time and information. 

Our capacity for processing information is also limited, compared to say what a computer can 

do. We have thus evolved a number of short-cut or approximate strategies, called heuristics, for 

judging the nature of a risk.  

 



Heuristics are efficient – they can operate with limited time and information, and can 

usually be relied upon to give an answer that is “good enough”, even if it is not the best that 

could be found with unlimited resources. 

 

Heuristics are in fact rather remarkable. They allow us to operate in a highly-pressurized world, 

and to largely make the right judgments and decisions. But sometimes, they get it wrong.  

 

The systematic errors associated with the use of heuristics are called “biases” 

 

Most of the early research into probability judgment involved identifying those situations in 

which errors do arise. This work was largely the product of two psychologists, Amos Tversky 

and Daniel Kahneman. They used a series of simple but highly convincing experiments to 

demonstrate a number of biases, and proposed heuristics to explain these biases. Their work 

came to known as the heuristics-and-biases research program, and it has since become 

enormously influential in psychology, economics, and business. In 2002 Kahneman was 

awarded the Nobel Prize in Economics (Tversky had passed away in 1996, and the Nobel prize 

is not awarded posthumously) “for having integrated insights from psychological research into 

economic science, especially concerning human judgment and decision-making under 

uncertainty”. In the rest of this document we review some of the key messages that have 

emerged from the heuristics-and-biases research. 

 

When people make intuitive probability judgments, they often rely on a combination of three 

heuristics, called availability, anchoring-and-adjustment, and representativeness. We discuss 

each in turn. 

 

People often judge the probability of an event by how easily specific instances of that event 

come to mind. This is called judgement by “availability”. 

 

A bit of thought reveals both why this heuristic is generally good, and why it can fail. Firstly, it 

will usually be easier to recall events that occur more often in reality than ones that occur only 

occasionally. This supports the use of the heuristic. But there are also elements that affect how 

easily an event comes to mind, and these may be entirely unrelated to the frequency with which 

it occurs. Events that have occurred recently, or that are particularly evocative or attention-

grabbing, tend to be more memorable, and therefore judged as more probable, than they really 

are. For example, risks associated with shark attacks or terrorist bombings tend to be 

overestimated, while more “mundane” risks like flu or car accidents tend to be underestimated 

(outside of the holiday season, when the risk of car travel is probably overestimated). When 

judging the likelihood of an event, it is important to ask yourself if your estimate is being 

swayed by features, like the vividness or recency of any information you have gathered, that 

should not influence a probability judgement. 

 

People often make estimates by quickly creating or using an initial “guess” and then 

adjusting this to get a final answer. This is called judgment by “anchoring and adjustment”. 

 

Again, this is a seemingly reasonable strategy when time and cognitive abilities are limited. An 

initial guess is often relatively easy to make, and can be suggested either by how the problem is 

stated, or by the result of a quick, partial computation. Some more careful thought can then go 



into adjusting the initial guess upward or downward. However, a number of studies have shown 

that the formation of the initial guess (called the “anchor”) can be quite easily and strongly 

manipulated, even by clearly arbitrary actions. Compounding this problem, when people adjust 

away from the initial anchor, they usually adjust by too little, so that the final estimate is biased 

towards (is too close to) the anchor. 

 

Some examples of biases arising from the anchoring-and-adjustment heuristic have become 

justifiably famous. In one experiment, two groups of people saw a roulette wheel spin, and then 

were asked whether the percentage of United Nation members that were African nations was 

greater or less than the number that came up on the wheel. They then were asked to give an 

exact estimate of this percentage. The experimental “trick” was that the roulette wheel was 

manipulated to land on number 10 for one group, and number 65 for the other. The group who 

saw the wheel land on 10 gave a mean estimate of 25%; the groups who saw the wheel land of 

65 gave a mean estimate of 45%! In another study, one group was asked whether Mahatma 

Gandhi died before or after age 9, or another group whether he died before or after age 140. 

After this the groups estimated the age at which he died. The mean estimate in the first group 

was age 50; in the second group it was 67! Even though the anchors are clearly random in the 

first example, and clearly incorrect in the second, they still strongly influenced peoples’ 

judgments.  

 

Probably the most harmful effect of anchoring-and-adjustment on elicitation is that when 

people are asked to give range estimates that cover what is likely to occur, these ranges 

that they give tend to be too narrow. 

 

Many studies have documented this phenomenon. For example, when asked for 90% ranges (so 

that the “correct” answer should lie outside the given range in only 10% of cases), the expressed 

ranges covered the correct answer in only 57% of cases.  When asked for 99.9% ranges, the 

expressed ranges covered the correct answer in only 85% of cases. This effect, called 

“overconfidence”, happens because people first think of a central, moderate, or most likely 

value. They then adjust this up and down, but (as before) insufficiently, giving range estimates 

that are too narrow. 

 

Completely avoiding anchoring-and-adjustment is nearly impossible, but when making 

probability assessments, it is vital to ask yourself critically whether the heuristic is having an 

undue influence on your estimate, especially when ranges or full distributions are involved. 

Think about what, if any, baseline or status quo you are using as an anchor, and whether this is a 

reasonable thing to do. Also, try to explicitly think of conditions under which more extreme 

values than your current range estimates might occur – if you can think of these conditions 

fairly easily, your range may be too narrow. 

 

People often judge the probability of an event by the degree to which it is similar to a larger 

group of occurrences or the process that generated it. This is called judgment by 

“representativeness”. 

 

The representativeness heuristic is perhaps the most difficult to pin down conceptually – it is 

closely related to the stereotypes and hidden assumptions that we all carry with us. In the 



classic demonstration of representativeness, people were given the following description of a 

person named Steve: 

 

“Steve is very shy and withdrawn, invariably helpful, but with little interest in 

people. A meek and tidy soul, he has a need for order and structure, and a 

passion for detail.” 

 

People judged Steve much more likely to be a librarian than a salesperson, because the 

descriptive “fits” the stereotype of a librarian. But think about how many salespeople there are 

in South Africa, and how many librarians there are. Is it really likely that, despite there being 

(probably) millions of salespeople and only a few hundred librarians in South Africa, Steve is 

more likely to be a librarian? What is happening here is that people are ignoring the base rates 

of the two professions when they make their judgements, even though this is a critical piece of 

information, far more diagnostic than the simple two-sentence summary of Steve. 

 

Ignoring base rates is a common bias associated with representativeness, but the broader 

problem is that representativeness induces us to give too much weight to fairly weak qualitative 

information. Descriptions alluding to stereotypes or assumptions are usually weakly predictive, 

at best. Usually this overweighting of qualitative descriptions comes at the expense of much 

stronger quantitative information, like base rates, sample sizes, and the like.  

 

Biases due to representativeness creep in whenever we allow qualitative descriptions to have 

more weight than they really deserve. This is an especially difficult problem to identify, because 

it is rarely perfectly clear how much weight a description should get – whether it is highly 

accurate, or not at all, or something inbetween. The balance of evidence suggests though that 

overweighting qualitative evidence is much more of a problem than underweighting it. Finding 

a balance is difficult, but again it is important to evaluate the quality of the information you are 

basing your judgment on, especially if you are making a judgment based on how much it 

“sounds like” something else. Try to imagine circumstances in which an event may be quite 

different from the phenomenon that it seems similar to. If it is easy to imagine such conditions, 

the apparent similarity is probably only superficial, and weakly diagnostic at best. 

 

The final bias we describe here does not arise so much from a heuristic as it is a general 

psychological trait. That is,  

 

We tend to seek mainly evidence that confirms our beliefs. We often do not seek out 

evidence that would contradict or disprove our beliefs, or find reasons to downweight or 

ignore this evidence when we do come across it. 

 

This tendency ignores the fact that contradictory (or “disconfirming”) evidence is logically far 

more powerful than supporting (or “confirming”) evidence. In logic a single contradiction is 

enough to prove a belief false, while no number of supporting pieces of evidence can 

conclusively “prove” that a belief is true – there is always the possibility that some contradiction 

may be found later on.  

 

A classic demonstration of our tendency to seek confirming evidence is to show people the set 

of four cards below, each of which have a letter on one side and a number on the other.  



 

 
 

Suppose someone claims: “If a card has a vowel on one side, then it has an even number on the 

other side”. Which of the cards should one turn over to test this claim? In the original study, 

45% of people chose “A and 4”, 33% chose “just A”, and 5% chose “A and 7”. Before reading 

further, you may want to decide which cards you would choose. 

 

It is fairly clear that the “A” card should be turned over: if there is an even number on its other 

side we have some confirming evidence, if there is an odd number then we have disproved the 

claim. But most people do not see at first that we must also turn over the “7” card – if we find a 

vowel, we have disproved the claim. The key difference between the “A” and “7” card is that the 

“7” card cannot provide any confirming evidence, only disconfirming. The “4” card here is 

irrelevant because even if there is a consonant on the other side that would not disprove the 

claim (since the claim says nothing about what should appear on the other side of a consonant 

card). 

 

In reality things are rarely so clear-cut that beliefs or theories can be conclusively proved or 

disproved, but it is important to bear in mind our tendency to seek out and pay attention to 

evidence that confirms our current beliefs. Try to actively think of possible counter-arguments 

to your opinions, and to find information that may support these opposing points of view. 

Although you may not change your mind, paying attention to a range of evidence is likely to 

improve your knowledge of the problem at hand, and reduce any overconfidence that might 

otherwise creep in. 

  

Introduction to the SATIM model 
 

The information that you provide during the elicitation process will be used to generate a range 

of plausible inputs to a large-scale energy model created and hosted by the Energy Research 

Centre at the University of Cape Town. This model is known as SATIM – the South African Times 

Model – and was originally created for the Long Term Mitigation Scenarios (LTMS) project but 

is now in its third generation. This document provides a brief overview of the model 

 

The economy of a nation or region consumes energy from a number of primary and secondary 

sources. This energy delivers services by means of a myriad of technologies large and small. A 

model of the demand for energy needs to capture this complex structure and thus these sources 

and technologies need to be organised in some logical way. The SATIM energy model is an 

attempt at just such a model. It is based on TIMES, a partial equilibrium linear optimisation 



model developed by ETSAP, one of the International Energy Agency’s implementing agencies, 

and a successor to MARKAL.  

 

The SATIM model is a stylized representation of the whole energy system, with an 

optimization step that selects the mix of supply-side technologies that meets the demand 

for final energy at least cost.  

 

The model includes economic costs, emissions, and a range of sector-specific constraints that 

can be applied at a point in time or cumulatively. A user interface provides a framework for 

both structuring the model and scenarios, and also for interpreting results. The model has 

proven useful in assessing the complex interrelationships between potential mitigation policies. 

 

The SATIM model is fundamentally “sectoral”, in that it organises the demand for energy by 

economic sector, and characterises the demand for energy in a sector by the energy 

services required by that sector.  

 

The SATIM model uses five demand sectors and two supply sectors – industry, agriculture, 

residential commercial and transport on the demand side, and electricity and liquid fuels on the 

supply side. The level of detail for a sector depends on the relative contribution of the sector to 

total consumption and also on how much funding has been historically received for developing 

that sector in the model. Thus the model for the Transport sector is quite detailed but that of the 

Agricultural sector is quite simplistically represented in SATIM, because in South Africa the 

Agriculture sector accounts for relatively small energy consumption and low emissions. 

 

In SATIM, services supplied to each of the five sectors are driven by technologies that 

require energy, with the quantity of that energy supply depending on the efficiency of the 

technology.  

 

Useful energy is an exogenous model input disaggregated by energy carrier, for each demand 

sector. Final energy demand is determined endogenously using the assumed efficiencies of the 

least cost demand-side technologies selected by the model. The two supply sectors and primary 

energy sources must meet the sum of these demands, with the model optimizing the mix of 

supply-side technologies to meet the demand for final energy at least cost.  

 

The SATIM model includes a number of parameters and general assumptions broadly covering, 

for each sector: (a) the structure of the sector and its energy services as it impacts on the 

demand for energy; (b) the establishment of base year demand for energy in the sector; (c) 

technical and cost parameters of the technologies available to satisfy the demand for energy 

services currently and in the future; (d) the projection of future demand for energy services. 

Several of these are the focus of the current elicitation process. 

 

 


