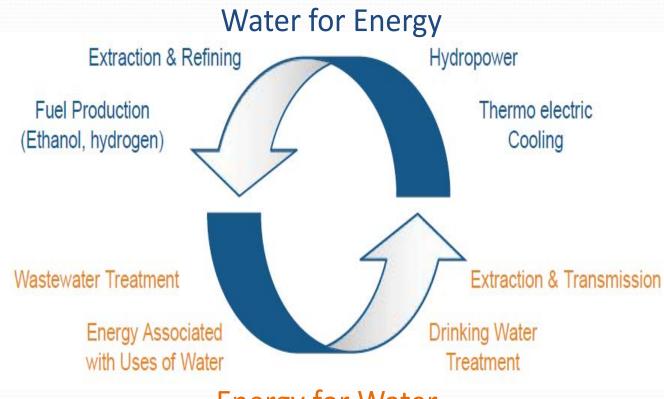
Incorporating Regional Variability in Water Supply Costs into Decision Making for Future Energy Options

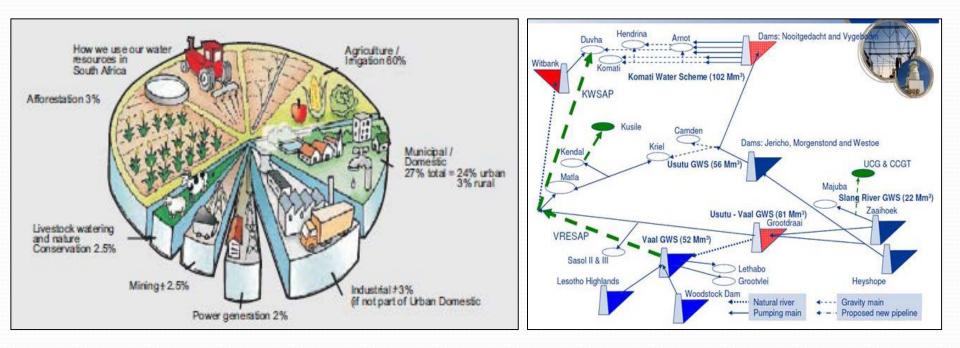
Dr. James Cullis 29th April 2015



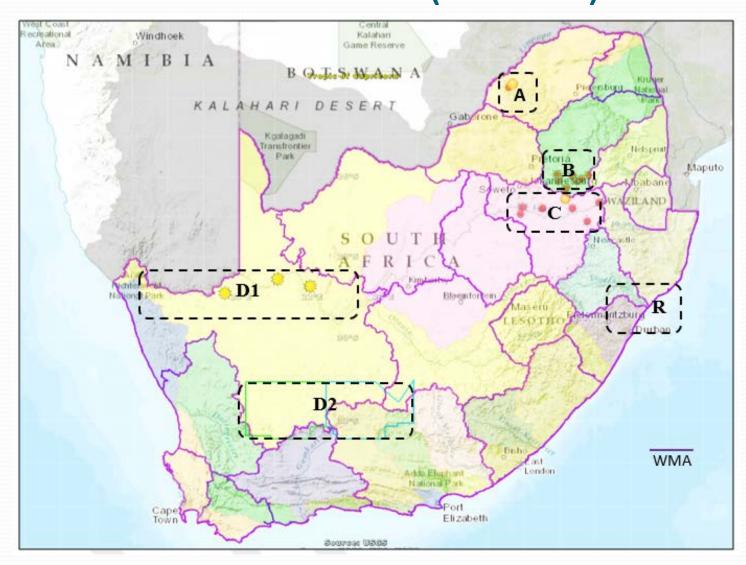
ENERGY RESEARCH CENTRE University of Cape Town Modelling the Water-Energy Nexus: Should regional variability in water availability and cost impact the decision making for future energy supply options?

- Task 1: Develop marginal water supply cost schedules
 - a) Define the water management areas of interest
 - b) Develop marginal water supply cost curves for different technologies
 - c) Assess potential climate change impacts for areas of interest
 - d) Update marginal water supply cost curves for CC impact
- Task 2: Develop the "water smart" SATIM model
- Task 3: SATIM Energy-Water Nexus (Phase 1) Model simulations
- Task 4: Report on Integrated Energy-Water Modelling and Analysis for the South Africa case study
- PHASE II: Additional water-energy nexus model development . (e.g. linked economic model, incl. externality costs, etc.)

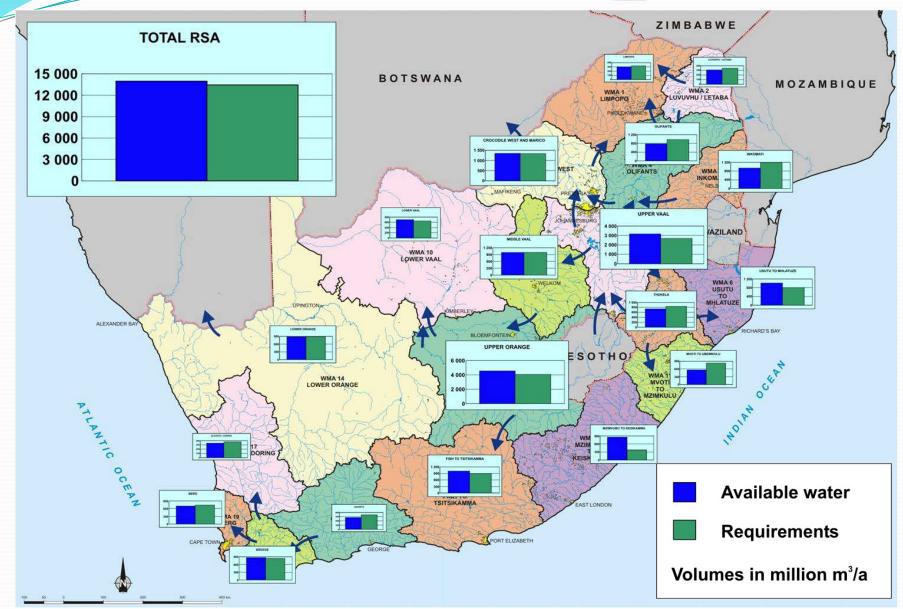
2


The Water-Energy Nexus

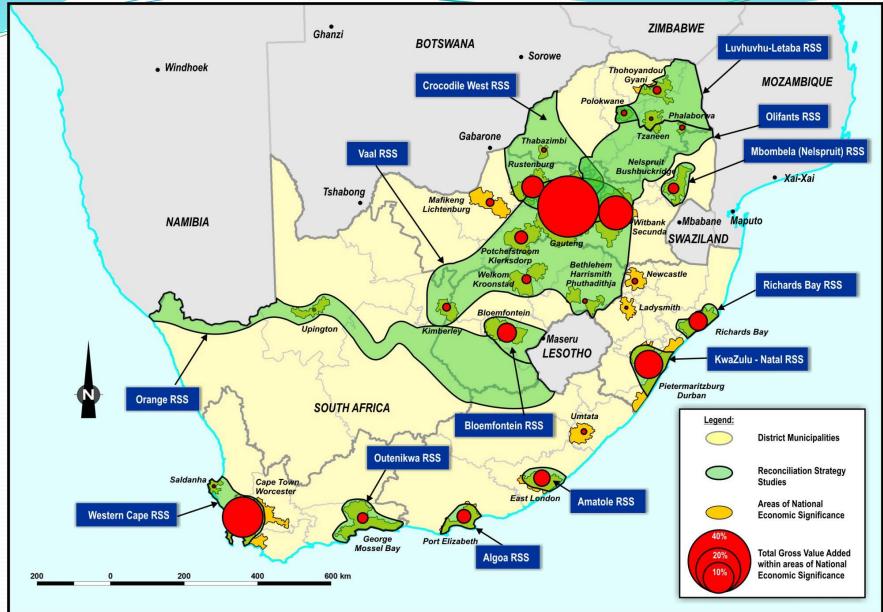
Energy for Water


Focused on Water for Energy, but has implications for Energy for Water.

Water for Energy in SA

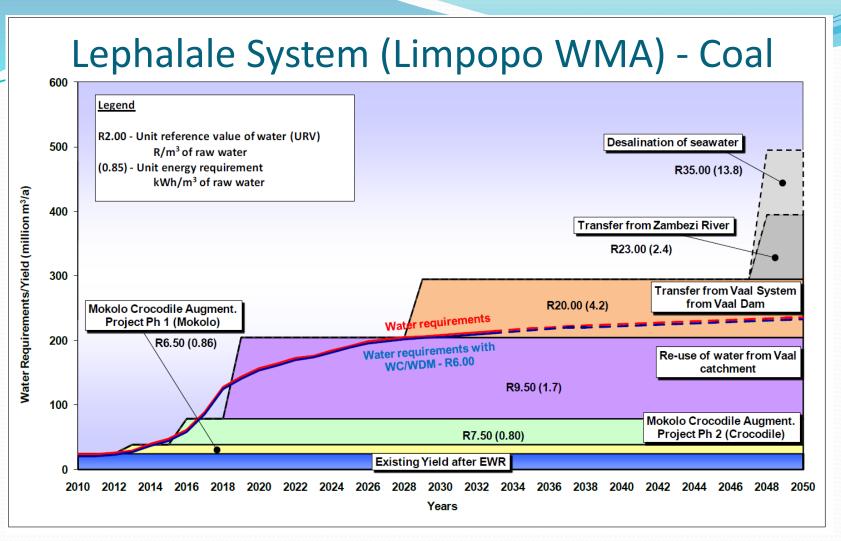


- Direct use for power generation is small (2%) at national level.
- Requires a high level of assurance (99.5%, i.e. 1:200 years) and is significant at a regional level (e.g. 37%. in the Upper Olifants).
- Water for power supported by major inter-basin transfers.
- The transfer and treatment of water is very sensitive to energy costs.

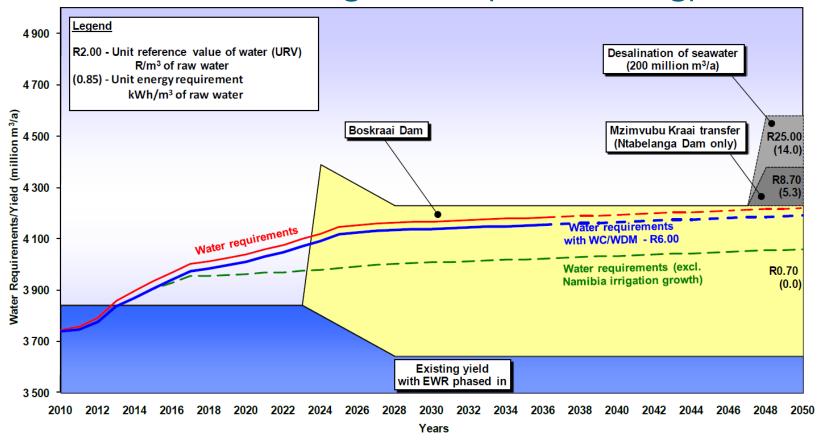

Matching energy producing regions with water resource areas (WMAs) in SA

Balancing Supply and Demand (year 2000)




Reconciliation Studies for Bulk Water Supply Systems

Determining the Regional Costs of Water for Energy


- Primary source of information is the Ultimate Marginal Cost study undertaken by DWA in 2010 with costs escalated to 2014.
- Study compares the ultimate marginal cost of water supply to different regions using a common set of assumptions.
- Includes desalination as the ultimate water supply option.
- Provides information on future regional water demands to 2050.
- Regional demands and some supply option costs updated with more recent information from reconciliation studies.

- Mokolo Crocodile Ph2: R7.50/m³, o.80 kWh/m³ (2015-2020)
- Re-use from Vaal: R9.50/m³, 1.7 kWh/m³ (2020-2030)
- Transfer from Vaal: R20/m³, 4.2 kWh/m³ (2030-2050)
- Transfer from Zambezi: R23/m³, 2.4 kWh/m³ (>2050)

Lower Orange – CSP (and fracking)

- Boskraai Dam: Ro.70/m³, o kWh (2020-2030)
- Mzimvubu Transfer: R5.30/m³, 5.3 kWh (2040-2050)
- Desalination (PE): R13/m³, 7.6 kWh (>2050)

Marginal Cost Curves for Water for Power

- Based on recommendations in DWS water pricing strategy.
- MWSC = Marginal Water Supply Cost (R/m³)
- Where MWSC = WRMC + WSSIC + WDMC + WSDC + WSEC + PWTC + SWTC + WUOC .
 - WRMC = Water Resource Management Charge
 - WSSIC = Water Supply Scheme Infrastructure Costs
 - WDMC = Waste Discharge Mitigation Charges
 - WSDC = Water supply delivery costs
 - WSEC = Water supply energy costs
 - PWTC = Primary water treatment costs
 - SWTC = Primary water treatment costs
- WSSIC includes the annual Unit Water Cost (UWC) for both bulk water supply scheme and delivery option (CUC + ADC).
- Schemes also compared on Unit Reference Value (URV)

11

Unit Water Costs (UWC) for Bulk Water Supply Schemes

Water Supply Region	Scheme Description	ID	Scheme Yield (M.m³/a)	Energy Requirement (kWh/m ³)	Capital Cost (R x 10 ⁶)	Annual O&M Cost (R x 10 ⁶)	CUC* (R x 10 ⁶)	ADC ^{\$} (R x 10 ⁶)	OMC (R x 10 ⁶)	EC [#] (R x 10⁵)	UWC (R/m³/a)	Net UWC (R/m3/a)	Note
	Mokolo Croc Phase 1	A1	28	0.85	2078	12	265	16	12	21	11.20	11.20	
	Mokolo Croc Phase 2	A2	169	0.8	10280	49	1311	77	49	122	9.22	9.22	
Lephalale	Reuse and transfer from Vaal	A3	126	0.87	1437	44	183	11	44	99	2.67	11.89	1
(Limpopo)	Transfer from Vaal	A4	90	1	3027	18	386	23	18	81	5.64	14.86	1
	Transfer from Zambezi	A5	100	2.44	17097	88	2180	128	88	220	26.16	31.16	2
	Desalination of seawater	A6	100	13.82	24691	438	3148	185	438	1244	50.15	48.15	3
	Olifants Dam	B1	55	0	1466	4	187	11	4	0	3.67	3.67	
	Use of acid mine drainage	B2	31	2.2	1934	54	247	15	54	61	12.16	10.16	3
Upper Olifants	Transfer from Vaal River	B3	190	1.07	5058	32	645	38	32	183	4.73	9.15	4
	Transfer from Zambezi River	B4	95	3.6	21922	117	2795	164	117	308	35.62	40.62	2
	Desalination of seawater	B5	100	13.82	16791	401	2141	126	401	1244	39.12	37.12	3
	LHWP II (Polihali DAm)	C1	437	0.00	14117	27	1800	106	27	0	4.42	4.42	5
	Use of AMD	C2	38	2.51	2150	136	274	16	136	86	13.48	11.48	3
	Thukela-Vaal Transfer	C3	522	3.35	25967	80	3311	195	80	1574	9.88	9.88	
Vaal	Orange-Vaal transfer	C4	517	1.99	21998	84	2805	165	84	926	7.70	7.70	
	Mzimvubu transfer scheme	C5	631	4.38	49117	227	6262	368	227	2487	14.81	14.81	
	Transfer from Zambezi	C6	650	4.21	61744	333	7872	463	333	2463	17.12	22.12	2
	Desalination of seawater	C7	100	13.6	9253	270	1180	69	270	1224	27.43	25.43	3
	Boskraai Dam	D1	227	0	1188	3	152	9	3	0	0.72	0.72	
Lower Orange	Mzimvubu kraai Transfer	D2	165	5.26	5164	48	658	39	48	781	9.25	9.25	
Urange	Desalination of seawater	D3	100	14.1	13204	373	1683	99	373	1269	34.24	34.24	

Notes:

* Annual capital loan repayment over a period of 25 years at 12% interest

^{\$} Assumes 30% depreciation portion and an average lifetime of 40 years

[#] Based on R0.90 /kWh electricity cost.

1 Requires additional cost of transfer to Lephalale

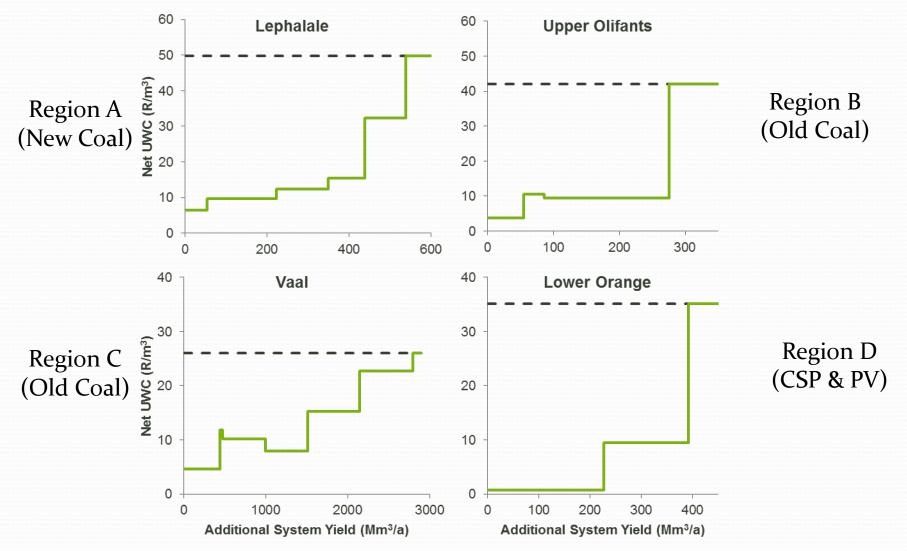
2 R5/m³ royalties for transfer from Zambezi

3 Excludes R2/m³ water treatment cost

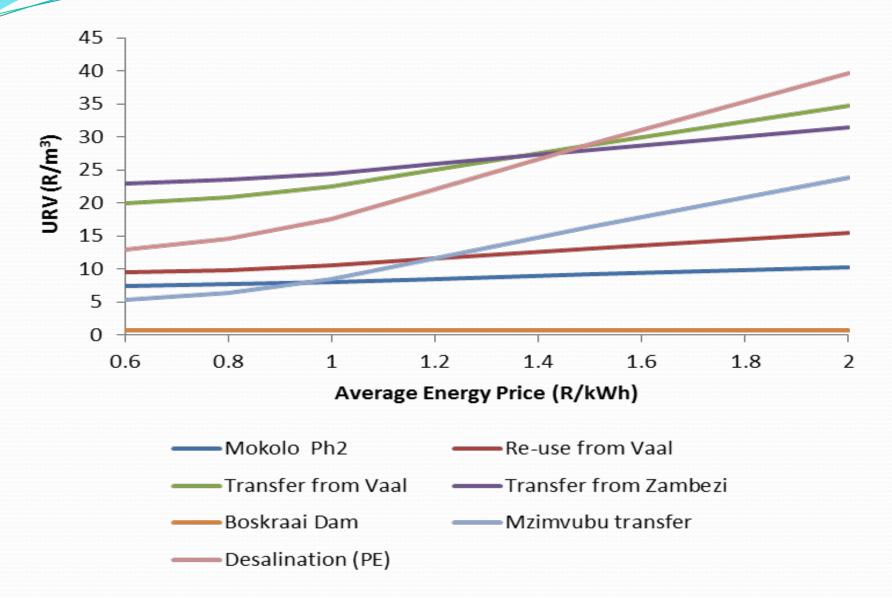
4 Additional cost of water from LHWPII

5 Excludes cost for hydropower station

Unit Water Costs (UWC) for Delivery Options


Region	Description of Final Delivery from Bulk water scheme to power plant	ID	Annual Supply (M.m ³)	Capital Cost (R x 10 ⁶)	O & M Cost (R x 10 ⁶ /a)	Energy Requirement (kWh/m ³)	Fuel Cost (R x 10 ⁶)	CUC* (R x 10 ⁶)	ADC ^{\$} (R x 10 ⁶)	OMC (R x 10 ⁶)	EC [#] (R x 10 ⁶)	UWC (R/m³/a)
Lephalale (Limpopo)	Gravity pipeline from Lephalale	A1	30	87	0.1	0		11	1	0	0	0.39
	Pipeline from Olifants Dam	B1	30	3139	9.1	0.41		400	24	9	11	14.80
	Import Vaal Dam - pipeline from dam in Upper Olifants	B2	30	479.5	1.7	0.41		61	4	2	11	2.58
Upper Olifants	Reuse AMD - pipeline from dam in Upper Olifants	B3	30	479.5	1.7	0.41		61	4	2	11	2.58
	Zambezi water - pipeline from Mokopane	B4	30	3740	11	1.38		477	28	11	37	18.44
	CSP - Pipeline pumping directly from Orange River	D1	0.27	6.64	0.26	0.32		1	0	0	0	4.57
Lower Orange	Hydraulic fracturing – road transport	D2	0.015	1.5	0		0.91	0	0	0	1	74.17
	Hydraulic fracturing – pipeline	D3	3	2678	6.7	1.30		341	20	7	4	123.91
	Hydraulic fracturing – groundwater	D4	0.1	3.1	0.008	4.01		0	0	0	0	7.87

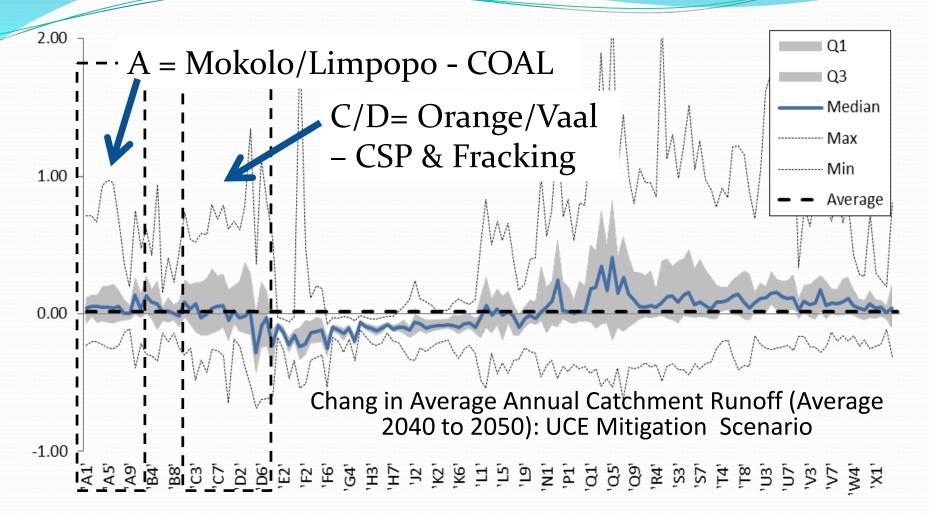
*Annual capital loan repayment over a period of 25 years at 12% interest


^{\$}Assumes 30% depreciation portion and an average lifetime of 40 years

[#]Using R0.90 /kWh electricity cost.

Regional Marginal Cost Curves for Water Supply

Sensitivity of Costs to Changes in Electricity Prices

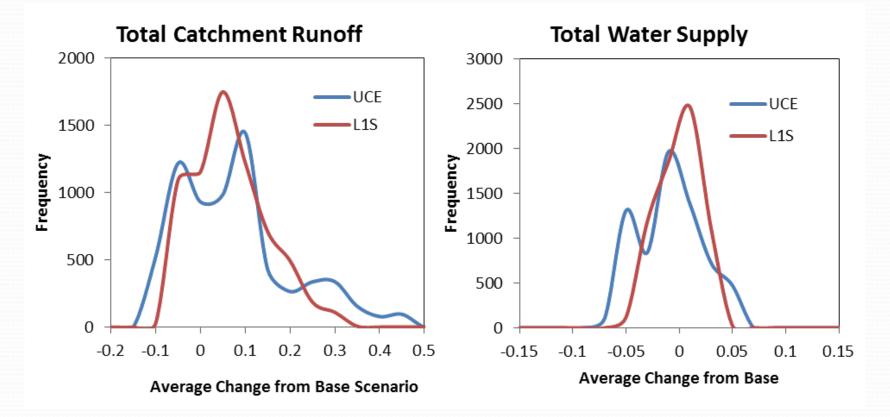


Initial Comparison of the Impact of using the Marginal Costs for Water for Power (Case study: New Coal vs CSP)

	Year		≈ 202	20	≈ 203	30	≈ 204	40
	Technology		Coal (Dry)	CSP	Coal (Dry)	CSP	Coal (Dry)	CSP
	Region		Lephalale	Orange	Lephalale	Orange	Lephalale	Orange
	Demand	(Mm³/a)	150	4000	200	4100	225	4150
BULK WATER SUPPLY COSTS (BW)								
Water Resource Management Charge	WMA ID		1	14	1	14	1	14
(Refer to Table 12)	WRMC	(c/m ³)	2.4	1.28	2.4	1.28	2.4	1.28
Bulk Water Supply Scheme	Scheme ID		A2	D1	A3	D1	A4	D2
(Refer to Table 22)	WSSIC	(R/m ³)	9.22	0.72	11.89	0.72	14.86	9.25
Regional Supply Opportunity Cost		(R/m ³)		8.50		11.18		5.61
Water Supply Delivery Scheme	Description		A1	D1	A1	D1	A1	D1
(Refer to Table 23)	WSDC	(R/m ³)	0.39	4.57	0.39	4.57	0.39	4.57
Primary Treatment Cost	PWTC	(R/m ³)	2	2	2	2	2	2
Total Regional Marginal Costs	TRMC	(R/m ³)	11.64	7.30	14.31	7.30	17.28	15.83
TRMC Opportunity Cost				4.34		7.01		1.45
Water Use Efficiency	Fuel Supply	(m³/MWh)	0.144		0.144		0.144	
(Refer to Table 4)	Production	(m ³ /MWh)	0.560	0.296	0.560	0.296	0.560	0.296
	TOTAL	(m ³ /MWh)	0.704	0.296	0.704	0.296	0.704	0.296
Total Bulk Water Supply Cost		(R/MWh)	8.20	2.16	10.08	2.16	12.17	4.69
Total Bulk Water Opportunity Cost		(R/MWh)		6.03		7.92		7.48

Putting this into context ... The current cost of electricity = R 0.90 /kWh = R 900 /MWh!

Climate Change Impacts on Water Availability

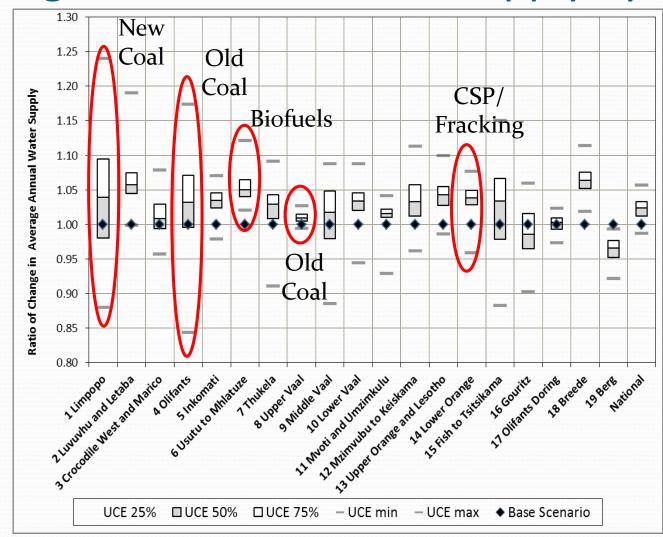


Range of potential impacts on the change in the average annual catchment surface water runoff for the period 2040 to 2050 in each secondary catchment based on a Hybrid Frequency Distribution (HFD) analysis of multiple GCM outputs from the MTI IGSM Model for an unconstrained emissions scenario (UCE). (Cullis et al, 2015)

Incorporating Regional Variability in Water Supply Costs into Decision Making for Future Energy Options

17

SA's integrated water supply system provides resilience to potential Climate Change impacts



Comparison of the potential impacts of climate change under the UCE and L1S scenarios in terms of total catchment runoff for the country and the change in the ability to meet the total national water supply demands for the period 2040 to 2050 (Cullis et al, 2015)

18

Potential Climate Change impacts on the

average annual bulk water supply by 2050

Range of potential impacts of climate change on the average annual bulk water supply to each WMA for the period 2040 to 2050 due to the UCE scenario relative to the base scenario (Cullis et al, 2015)

Summary of Potential Climate Change Impacts

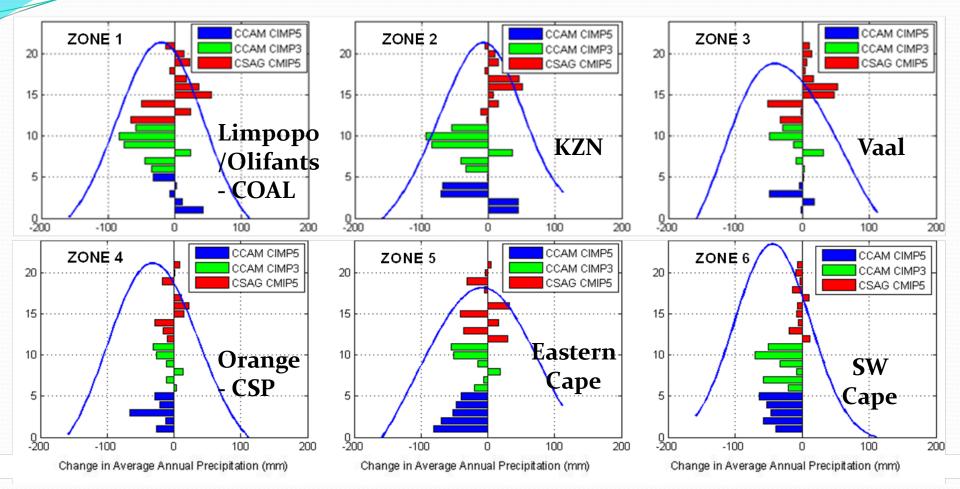
Base (CC Scenario/Base -1) Min 25% 50% 75% Max Min 25% 50% 75% Max 1 Limpopo -1.5% 2.8% 4.8% 8.9% 15.1% -12.0% -2.0% 3.9% 9.5% 24. 2 Luvuvhu and Letaba 0.0% 4.7% 7.4% 10.3% 18.1% -0.2% 4.5% 5.7% 7.4% 19.4 3 Crocodile West/Marico -6.3% 5.2% 7.4% 10.9% 16.4% -4.2% -0.6% 0.8% 2.9% 7.5% 4 Olifants -5.4% 4.4% 7.5% 11.4% 22.0% -15.7% -0.5% 3.2% 7.1% 17.7 5 Inkomati -5.0% 4.8% 8.8% 11.3% 22.5% -2.1% 2.3% 3.5% 4.5% 7.1 6 Usutu to Mhlatuze -12.1% 3.3% 6.0% 8.8% 17.4% 2.0% 4.0% 5.0% 6.4% 12. 7 Thukela -18.1% 2.2% 7.0% 9.9% 23.3% -8.9% 0.9% 3.0% 4.3% 9.1%	
2 Luvuvhu and Letaba0.0%4.7%7.4%10.3%18.1%-0.2%4.5%5.7%7.4%19.43 Crocodile West/Marico-6.3%5.2%7.4%10.9%16.4%-4.2%-0.6%0.8%2.9%7.5%4 Olifants-5.4%4.4%7.5%11.4%22.0%-15.7%-0.5%3.2%7.1%17.4%5 Inkomati-5.0%4.8%8.8%11.3%22.5%-2.1%2.3%3.5%4.5%7.1%6 Usutu to Mhlatuze-12.1%3.3%6.0%8.8%17.4%2.0%4.0%5.0%6.4%12.7 Thukela-18.1%2.2%7.0%9.9%23.3%-8.9%0.9%3.0%4.3%9.18 Upper Vaal-9.3%4.5%7.4%13.0%19.6%-0.6%0.4%0.9%1.5%2.7%9 Middle Vaal-5.3%1.2%7.7%12.6%21.0%-11.5%-2.0%1.7%4.9%8.8%10 Lower Vaal-1.0%3.0%5.9%9.2%14.8%-5.5%2.0%3.3%4.5%4.2%11 Mvoti and Umzimkulu-35.3%0.4%4.3%8.8%27.1%-7.1%1.0%1.6%2.2%4.2%12 Mzimvubu to Keiskama-10.7%-0.8%5.2%10.0%24.6%-3.8%1.2%3.3%5.8%11.13 Upper Orange-1.9%1.8%6.2%9.7%16.0%-1.4%2.8%3.8%4.9%7.714 Lower Orange </td <td>ах</td>	ах
3 Crocodile West/Marico -6.3% 5.2% 7.4% 10.9% 16.4% -4.2% -0.6% 0.8% 2.9% 7.5% 4 Olifants -5.4% 4.4% 7.5% 11.4% 22.0% -15.7% -0.5% 3.2% 7.1% 17. 5 Inkomati -5.0% 4.8% 8.8% 11.3% 22.5% -2.1% 2.3% 3.5% 4.5% 7.1 6 Usutu to Mhlatuze -12.1% 3.3% 6.0% 8.8% 17.4% 2.0% 4.0% 5.0% 6.4% 12. 7 Thukela -18.1% 2.2% 7.0% 9.9% 23.3% -8.9% 0.9% 3.0% 4.3% 9.1 8 Upper Vaal -9.3% 4.5% 7.4% 13.0% 19.6% -0.6% 0.4% 0.9% 1.5% 2.7 9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8 <t< td=""><td><mark>0%</mark></td></t<>	<mark>0%</mark>
4 Olifants-5.4%4.4%7.5%11.4%22.0%-15.7%-0.5%3.2%7.1%17.5 Inkomati-5.0%4.8%8.8%11.3%22.5%-2.1%2.3%3.5%4.5%7.1%6 Usutu to Mhlatuze-12.1%3.3%6.0%8.8%17.4%2.0%4.0%5.0%6.4%12.7 Thukela-18.1%2.2%7.0%9.9%23.3%-8.9%0.9%3.0%4.3%9.18 Upper Vaal-9.3%4.5%7.4%13.0%19.6%-0.6%0.4%0.9%1.5%2.79 Middle Vaal-5.3%1.2%7.7%12.6%21.0%-11.5%-2.0%1.7%4.9%8.810 Lower Vaal-1.0%3.0%5.9%9.2%14.8%-5.5%2.0%3.3%4.5%4.2%11 Mvoti and Umzimkulu-35.3%0.4%4.3%8.8%27.1%-7.1%1.0%1.6%2.2%4.2%12 Mzimvubu to Keiskama-10.7%-0.8%5.2%10.0%24.6%-3.8%1.2%3.3%5.8%11.13 Upper Orange-1.9%1.8%6.2%9.7%16.0%-1.4%2.8%3.8%4.9%7.714 Lower Orange1.3%3.8%4.9%6.7%10.4%-4.1%2.8%3.8%4.9%7.7	0%
5 Inkomati -5.0% 4.8% 8.8% 11.3% 22.5% -2.1% 2.3% 3.5% 4.5% 7.1 6 Usutu to Mhlatuze -12.1% 3.3% 6.0% 8.8% 17.4% 2.0% 4.0% 5.0% 6.4% 12.4% 7 Thukela -18.1% 2.2% 7.0% 9.9% 23.3% -8.9% 0.9% 3.0% 4.3% 9.1 8 Upper Vaal -9.3% 4.5% 7.4% 13.0% 19.6% -0.6% 0.4% 0.9% 1.5% 2.7 9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8% 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8% 11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2% 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.5% 10.4%	1%
6 Usutu to Mhlatuze -12.1% 3.3% 6.0% 8.8% 17.4% 2.0% 4.0% 5.0% 6.4% 12. 7 Thukela -18.1% 2.2% 7.0% 9.9% 23.3% -8.9% 0.9% 3.0% 4.3% 9.1 8 Upper Vaal -9.3% 4.5% 7.4% 13.0% 19.6% -0.6% 0.4% 0.9% 1.5% 2.7 9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8 11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2% 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11. 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.8% 3.8% 4.9% 7.7	<mark>4%</mark>
7 Thukela -18.1% 2.2% 7.0% 9.9% 23.3% -8.9% 0.9% 3.0% 4.3% 9.1 8 Upper Vaal -9.3% 4.5% 7.4% 13.0% 19.6% -0.6% 0.4% 0.9% 1.5% 2.7 9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8 11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2% 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11.1% 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.7% 4.3% 5.5% 10.4% 14 Lower Orange 1.3% 3.8% 4.9% 6.7% 10.4% -4.1% 2.8% 3.8% 4.9% 7.7 <	.%
8 Upper Vaal -9.3% 4.5% 7.4% 13.0% 19.6% -0.6% 0.4% 0.9% 1.5% 2.7 9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8 11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11. 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.8% 3.8% 4.9% 7.7	2%
9 Middle Vaal -5.3% 1.2% 7.7% 12.6% 21.0% -11.5% -2.0% 1.7% 4.9% 8.8 10 Lower Vaal -1.0% 3.0% 5.9% 9.2% 14.8% -5.5% 2.0% 3.3% 4.5% 8.8 11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11.3% 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.7% 4.3% 5.5% 10.4% 14 Lower Orange 1.3% 3.8% 4.9% 6.7% 10.4% -4.1% 2.8% 3.8% 4.9% 7.7	.%
10 Lower Vaal-1.0%3.0%5.9%9.2%14.8%-5.5%2.0%3.3%4.5%8.8%11 Mvoti and Umzimkulu-35.3%0.4%4.3%8.8%27.1%-7.1%1.0%1.6%2.2%4.2%12 Mzimvubu to Keiskama-10.7%-0.8%5.2%10.0%24.6%-3.8%1.2%3.3%5.8%11.3%13 Upper Orange-1.9%1.8%6.2%9.7%16.0%-1.4%2.7%4.3%5.5%10.4%14 Lower Orange1.3%3.8%4.9%6.7%10.4%-4.1%2.8%3.8%4.9%7.7	<mark>′%</mark>
11 Mvoti and Umzimkulu -35.3% 0.4% 4.3% 8.8% 27.1% -7.1% 1.0% 1.6% 2.2% 4.2 12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11.1 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.7% 4.3% 5.5% 10.4% 14 Lower Orange 1.3% 3.8% 4.9% 6.7% 10.4% -4.1% 2.8% 3.8% 4.9% 7.7	\$%
12 Mzimvubu to Keiskama -10.7% -0.8% 5.2% 10.0% 24.6% -3.8% 1.2% 3.3% 5.8% 11.1 13 Upper Orange -1.9% 1.8% 6.2% 9.7% 16.0% -1.4% 2.7% 4.3% 5.5% 10.4 14 Lower Orange 1.3% 3.8% 4.9% 6.7% 10.4% -4.1% 2.8% 3.8% 4.9% 7.7	\$%
13 Upper Orange-1.9%1.8%6.2%9.7%16.0%-1.4%2.7%4.3%5.5%10.4%14 Lower Orange1.3%3.8%4.9%6.7%10.4%-4.1%2.8%3.8%4.9%7.7	!%
14 Lower Orange 1.3% 3.8% 4.9% 6.7% 10.4% -4.1% 2.8% 3.8% 4.9% 7.7	3%
	0%
15 Fish to Tsitsikama 271/201/E21/001/10.61/11.81/22.21/22.21/671/15	<mark>′%</mark>
15 Fish to Tsitsikama -3.7% 2.0% 5.2% 9.0% 19.6% -11.8% -2.2% 3.3% 6.7% 15.	1%
16 Gouritz 2.2% 6.6% 8.1% 10.0% 16.0% -9.7% -3.5% -1.5% 1.5% 5.9	1%
17 Olifants Doring 2.1% 4.2% 5.0% 5.9% 8.8% -2.6% -0.7% 0.3% 0.9% 2.3	\$%
18 Breede 2.2% 5.9% 7.3% 8.7% 13.2% 1.9% 5.2% 6.3% 7.6% 11.4	4%
19 Berg 2.2% 5.0% 5.9% 7.0% 11.0% -7.8% -4.7% -3.4% -2.3% -0.7	7%
National -0.8% 4.5% 6.3% 8.8% 11.8% -1.3% 1.2% 2.3% 3.3% 5.7	%
(Source: Cullis et al, 2015)	

The Way Forward

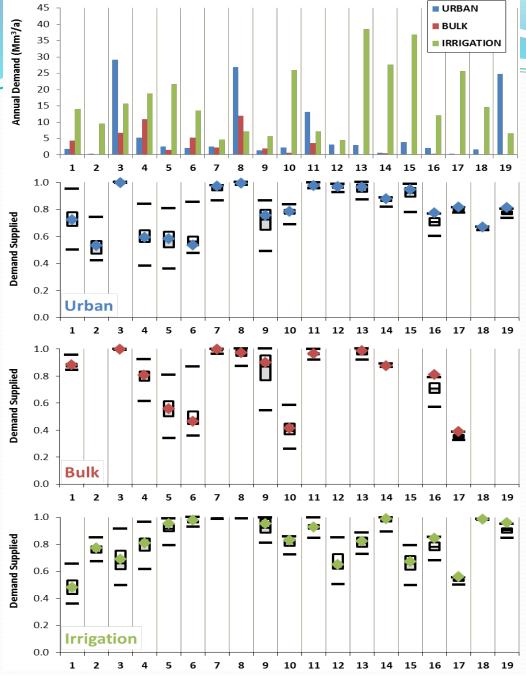
- Incorporate Marginal Cost Curves into SATIM-W (Task 2)
- Analysis of alternative energy supply scenarios (Task 3)
- Considerations for further research and model development:
 - Revising of regional marginal cost curves with updated Recon Studies
 - Incorporating externalities (social, environmental and opportunity)
 - Consider opportunity costs for water for power in different regions.
 - Review future water demands and develop a linked water-energyeconomic model to investigate the potential impact of alternative economic scenarios in terms of future water and energy demands.
 - Evaluate the economic impact of water allocations to power sector
 - Undertake more detailed study on potential climate change impacts on water supply and production efficiency for individual power stations.
 - Incorporate additional climate change risks such as flooding.

Additional Slides

The "True" cost of water for Power

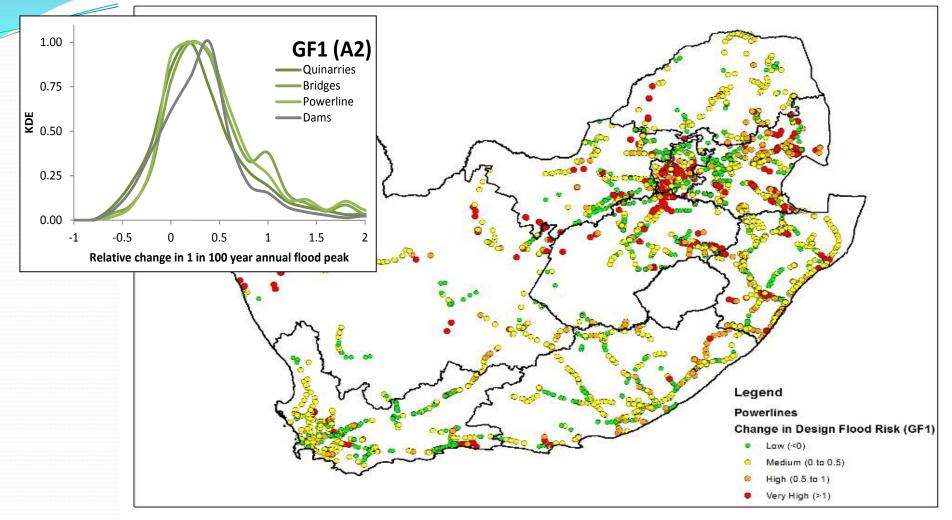

"The water tariff, neither reflects scarcity nor the socio-economic cost of erroneous allocation of water to suboptimal applications. The water tariff therefore does not have any signalling power. To aggravate matters, the water tariff is only in rare cases reflective of the full cost of delivering the water – although that is an ideal the government is aspiring to." (Blignaut et al, 2011).

• Incorporating Marginal Cost Curves for Water Supply into SATIM-W addresses (in part) the second of these issues, but not the first... i.e. the externalities including social and environmental impacts and opportunity costs

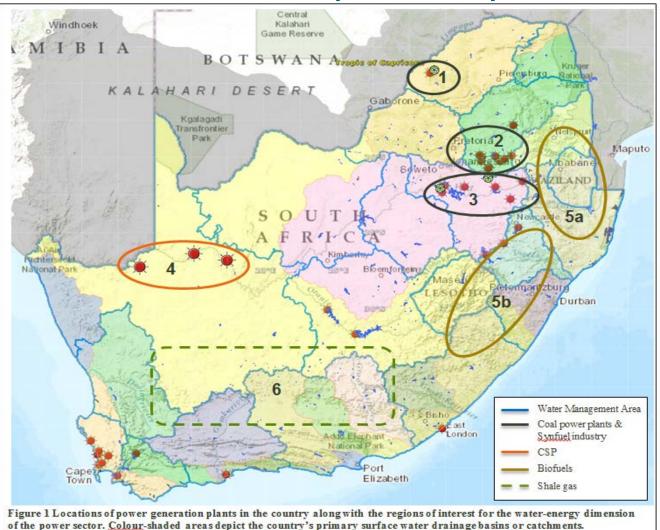

			Water	Net Generation	Society wide	Opportunity
	NMR of water	Difference	volume	Output	loss or gain	cost
	(R/m3)	(R/m3)	Mm3	GWh	R (million)	R/kWh
Dry-cooled with FGD	9717		26.17	32300		
Dry-cooled with no FGD	11149	-1432	16.25	32300	-23277	-0.72
Conventional coal	3399	6318	53.52	32300	338153	10.47
Solar	14667	-4950	5.41	18237	-26757	-1.47
Wind	930736	-921019	0.05	12102	-42357	-3.50
Biomass	11210	-1493	14.27	31925	-21309	-0.67

NMR = Net Marginal Rate for water (Blignaut et al, 2011)

HED of Potential Climate Change Impacts


Potential increase in average annual precipitation in mm/year for the period 2040-2050 for six general hydro-climatic zones across South Africa. Comparison of the hybrid frequency distribution (HFD) of UCE scenario from the IGSM climate model with outputs from a number of statistically (CSAG) and dynamically (CCAM) downscaled regional climate models for South Africa (Cullis et al, 2015)

Range of potential CC impacts on bulk water supply in SA by 2050


1 Limpopo (NEW COAL) 2 Luvuvhu and Letaba 3 Crocodile West and Marico 4 Olifants 5 Inkomati 6 Usutu to Mhlatuze 7 Thukela 8 Upper Vaal 9 Middle Vaal 10 Lower Vaal 11 Mvoti and Umzimkulu 12 Mzimvubu to Keiskama 13 Upper Orange and Lesotho 14 Lower Orange (CSP) 15 Fish to Tsitsikama 16 Gouritz 17 Olifants Doring 18 Breede 19 Berg (Source: Cullis et al, 2015)

Other Climate Change Risks for Energy = FLOODING!

Provisional assessment of the risk of climate change impacts on the design flood by 2100. (Analysis based on potential changes in 1:100 year RI flood for the GF1 climate model- no consideration of hydraulic characteristics of individual structures.) (Cullis et al., 2015)

Matching energy producing regions with water resource areas (WMAs) in SA

27

Marginal Cost Curves for Water for Power

- Based on components of DWS bulk water pricing strategy
- Components of the marginal cost of water
 - Water Resources Management Charge (WRMC)
 - Scheme capital cost (function of region, year, other demands)
 - Delivery capital cost (pipeline, pumpstation, trucking, etc.)
 - Treatment cost (to meet required standard)
 - O&M costs and Energy costs (for pumping)
- Based on a unit reference value (URV)
 - Used for standardised comparison of options
 - Includes capital costs for scheme
 - Includes operations and maintenance (O&M)
 - URV (R/m³) = NPV(costs)/NPV(supply = 1:50 year yield)
 - Discounted over a 30 year period using an annual discount rate of 8%.
 - Does not include cost of borrowing (i.e. not the final water tariff)
- Cost of treating effluent (waste discharge charge) is not included as Eskom has a Zero Liquid Effluent Discharge (ZLED) policy.