The acceptable level of risk for the South African sardine resource

SWG-PEL Meeting 7th August 2019

Carryn de Moor

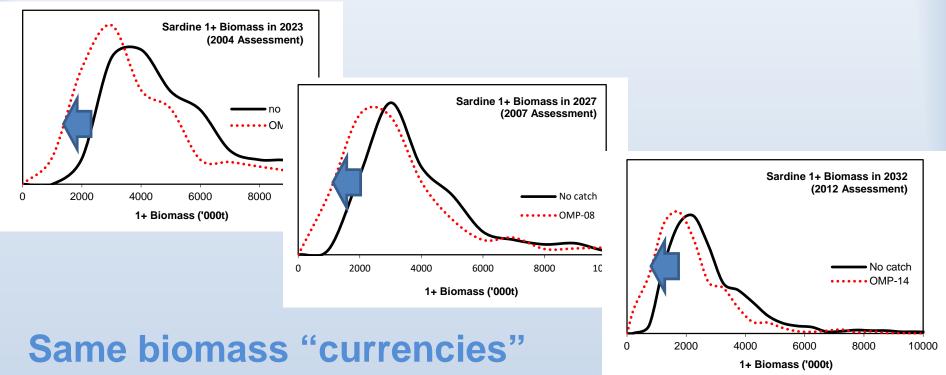
Marine Resource Assessment and Management Group (MARAM) Department of Mathematics and Applied Mathematics University of Cape Town

History: OMP-14 risk

 <u>Risk threshold</u>: the average total sardine 1+ biomass between November 1991 and 1994

Unchanged from earlier OMPs

 <u>Risk definition</u>: the probability that the total sardine 1+ biomass falls below the risk threshold at least once during the projection period of 20 years


Unchanged from earlier OMPs

• <u>Risk level:</u> 21%

Adjusted between OMPs to accommodate changes in understanding of resource dynamics

History: "Leftward shift"

- Maintaining the ratio of 20^{%ile} B^{CMP}_{final} / B^{NoC}_{final} to be the same (=0.68) with similar ratios at other lower %iles
- Maintain the same level of 'depletion' of the sardine resource between OMPs, despite potential changes in understanding of resource dynamics as further data become available

History: Why the "Leftward Shift" couldn't be used straightforwardly for OMP-18

	OMP-14 (de Moor and Butterworth 2015)	OMP-18 (de Moor and Butterworth 2016)
Population structure	Single homogenous population	Two mixing stocks
Spawner biomass	2+ biomass	Maturity-at-length ogive
	Weight-at-age	Weight-at-length
Survey trawl selectivity	Three levels, with reduced availability at smaller and larger lengths	Logistic (allowing for some escapement of smaller fish)
Commercial selectivity	Time-invariant with 'inverted lognormal' distribution at larger lengths	Estimated separately for 4 time periods with logistic distribution at larger lengths
Bycatch	No observation error for bycatch	F _{bycatch} estimated
Prior(Nov acoutic bias)	$k_{ac}^{S} \sim N(0.714, 0.077^{2})$	$ln(k_{ac}^{S}) \sim N(-0.310, 0.094^{2})$
Von-Bertalanffy growth parameters	Estimate $\kappa x \; L_{\!_{\infty}}$ and $L_{\!_{\infty}}$	Estimate L ₁ and L ₃
t _o	Time invariant	Varies annually

- West component recruitment is primary contributor to recruitment for entire population
- West component recruitment dependent on west component effB^{sp}

History: Why the "Leftward Shift" couldn't be used straightforwardly for OMP-18

- <u>Risk threshold:</u> the sardine west component effective spawner biomass in November 2007
- <u>Risk definition</u>: the probability that the sardine west component effective spawner biomass falls below the risk threshold over the projection period of 20 years

Less onerous measure of risk; current low sardine biomass

- The biomass "currency" of the risk threshold was changed from 1+ biomass to west component effB^{sp}.
- Total 1+ biomass no longer primary concern
- Leftward shift measures impact of fishing on total 1+ biomass

- HCR parameter β tuned until depletion of total biomass under Draft OMP-18 (excluding red flags) was similar to that of total 1+ biomass under previous OMPs
- <u>Risk level:</u> 16% after red flags included

• Calculate 'depletion' of total spawner biomass under previous OMPs

	B ^{Sp,OMP} / B ^{Sp,NoC} final		
	OMP-04	OMP-08	OMP-14
10%ile	0.49	0.46	0.51
20%ile	0.65	0.60	0.60
30%ile	0.67	0.65	0.63
40%ile	0.69	0.66	0.69
50%ile	0.68	0.66	0.69

- Calculate 'depletion' of total spawner biomass under previous OMPs
- Tune the HCR control parameter β so that CMP* (without red flags) has same level of depletion of west component effective spawner biomass (β=0.139 with Risk^s=0.166)

	B ^{Sp,OMP} final / B ^{Sp,NoC} final			effB ^{Sp,OMP} final / effB ^{Sp,NoC} final
	OMP-04	OMP-08	OMP-14	CMP*
10%ile	0.49	0.46	0.51	0.55
20%ile	0.65	0.60	0.60	0.60
30%ile	0.67	0.65	0.63	0.61
40%ile	0.69	0.66	0.69	0.63
50%ile	0.68	0.66	0.69	0.65

- Calculate 'depletion' of total spawner biomass under previous OMPs
- Tune the HCR control parameter β so that CMP* (without red flags) has same level of depletion of west component effective spawner biomass (β=0.139 with Risk^s=0.166)
- Realistically achievable p(B_{west}<150) = that achieved with a preventative red flag of 50% TAC reduction

Corrective	None	Implicit	Implicit	
measure	(CMP*)	0.5*TAC	0.5*TAC	
β	0.139	0.139	0.149	
Risk ^s	0.166	0.154	0.156	
p(B _{west} <150)	0.116	0.108	0.110	
C ^s _{tot}	94 77 [31,200]	90 73 [18,200]	93 78 [18,200]	

- Calculate 'depletion' of total spawner biomass under previous OMPs
- Tune the HCR control parameter β so that CMP* (without red flags) has same level of depletion of west component effective spawner biomass (β=0.139 with Risk^s=0.166)
- Realistically achievable p(B_{west}<150) = that achieved with a preventative red flag of 50% TAC reduction
- Tune HCR control parameter β so that CMP** with preventative red flag has $p(B_{west} < 150)=0.110$ ($\beta=0.124$ with Risk^S=0.155)

Corrective measure	None (CMP*)	Implicit 0.5*TAC	Implicit 0.5*TAC	CMP* with red flag	CMP**
β	0.139	0.139	0.149	0.139	0.124
Risk ^s	0.166	0.154	0.156	0.160	0.155
p(B _{west} <150)	0.116	0.108	0.110	0.112	0.110
C ^s tot	94 77 [31,200]	90 73 [18,200]	93 78 [18,200]	94 77 [31,200]	89 70 [31,200]

- Calculate 'depletion' of total spawner biomass under previous OMPs
- Tune the HCR control parameter β so that CMP* (without red flags) has same level of depletion of west component effective spawner biomass (β=0.139 with Risk^s=0.166)
- Realistically achievable p(B_{west}<150) = that achieved with a preventative red flag of 50% TAC reduction
- Tune HCR control parameter β so that CMP** with preventative red flag has $p(B_{west} < 150)=0.110$ ($\beta=0.124$ with Risk^S=0.155)
- Applying penalty/benefit red flag with β =0.124 results in Risk^S=0.153 (CMP[#])

Managing RSA sardine using CMP[#] means on average the west component effB^{sp} would be below the lowest historical level (B_{lim}) 15% of the projection period

How does 15.3% compare internationally?

Country	Max Risk	Comments	CMP [#]
ICES	Risk1 = average p(B ^{sp} <b<sub>lim) < 5%</b<sub>		15.3%
	Risk3 = max p(B ^{sp} <b<sub>lim) < 5%</b<sub>		20% (17% over 2 nd half of projection period)
Australia	p(B ^{sp} >B _{lim})>90% i.e. p(B ^{sp} <b<sub>lim) < 10%</b<sub>	B _{lim} ~20%B ₀ or more conservative for less productive stocks and/or key forage species	15.3%
Chile Under review	p(B ^{sp} <50%SSB ₀)<10%	SSB ₀ – level of B ^{sp} in absence of catch 30% has recently been accepted for sardine	74% (55% under no catch)
Japan Under review	Minimise p(B ^{sp} <b<sub>lim)</b<sub>	Most recent sardine risk was 0-3% Considers	15.3% risk for Tier 1 sto
USA	ACL ≤ ABC = 96% of OFL	OFL = catch corresp to F _{MSY}	
	If B ^{sp} _y <0.5B _{MSY} p(B ^{sp} _{y+10} >0.5B _{MSY})>50%		

Dynamic B₀

- Idea behind Leftward shift is to consider impact of harvesting in the context of what could be expected under a no catch scenario
- Dynamic B_0 :
 - the reference level (B_0) is calculated under prevailing environmental conditions;
 - accounts for e.g. regime shifts
 - typically considers B₀ from recent years

effB ^{sp} west ^{CMP#} /effB ^{sp} west ^{NoC}	5%ile	10%ile	median
2027	0.47	0.55	0.69
2028	0.47	0.53	0.69
2029	0.47	0.54	0.70
2030	0.47	0.53	0.70
2031	0.48	0.53	0.70
2032	0.47	0.54	0.69
2033	0.45	0.54	0.69
2034	0.47	0.54	0.70
2035	0.46	0.53	0.70
2036	0.47	0.53	0.70

Summary

- Applying "Leftward shift" in comparing biomass "currency" of interest (effB^{sp}_{west}) under CMP[#] with that of B^{sp}_{tot} under previous OMPs and following method previously used for red flags results in CMP[#] with β=0.124 with Risk^s=0.153
 - "mismatching" Leftward shift based on ${\rm B_{tot}}$ had β =0.138 with Risk^S=0.160 for Draft OMP-18
- This level of risk (15.3%) is higher than that typically considered in other countries (5-10%)
- But risk is 7% under a no catch scenario
- In the long-term effB^{sp}_{west} under CMP[#] has 90% probability of being at least 50% of that under a no catch scenario