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Proposal for a common simple and widely applicable model for right whale 

population assessments 

D.S. Butterworth and A. Ross-Gillespie 

Summary 

A simple model is presented whose aim is to be applicable across a number of right whale 

populations, in particular so as to provide results that can be compared across these 

populations. For this reason, the model is designed to require only very limited data, 

specifically a time series of comparable annual calf counts without too many missing values. 

Right whales are assumed to calve at either three- or five-year intervals, with the associated 

proportions changing over time. Similarly, the value of the parameter (X) reflecting the 

product of the proportion of births that are female and the first-year survival rate may change 

over time. An initial application to calf count data for the South African right whale population 

suggests that such data do not contain sufficient information for annual variations in both the 

X parameter and in the annual proportion of calving intervals that are three years to be 

estimated. Fixing X and estimating annual changes in the proportion of three-year calving 

intervals only appears to provide the best performing approach.     

Introduction 

The basic idea underlying this document is to develop an as-simple-as-possible model that can be applied to all 

the various Southern Hemisphere right whale populations to assess demographics and allow for comparison 

across the populations. The proposed model is outlined in this document, and results are provided for a 

preliminary application to the South African right whale data to assess feasibility. The full details of the model 

proposed can be found in the Appendix, but a broad outline of key features is provided here: 

• Two key population components are estimated for each year: the total number of adult (past the age 

at first parturition) females (𝑁𝑦
𝑡) and the total number of calving females (𝑁𝑦

𝑐). 

• The model assumes that each female will reproduce after either a three-year or a five-year interval. 

• The model is fit to annual calf counts (which are assumed not to miss any animals). 

• The model estimates: 

o  the starting adult female population size for 𝑁𝑦0−𝑛
𝑡 ,  

o the annual proportion of calving females that will enter a three-year calving cycle,  

o a (potentially time-varying) parameter that accounts for juvenile mortality as well as the 

proportion of calves that are female, and 

o the initial (assumed to be steady) population growth rate. 

Results 

In order to commence the population’s dynamics, the model is started a fair number of n years before the year 

(𝑦0) for which the first calf count is available. Several assumptions have been made for this initial analysis, such 

as: 

(a) a constant growth population growth rate (R),  

(b) a constant juvenile mortality rate (𝑋0) and  

(c) that a constant proportion (𝑃0) of calving females will enter a three-year calving cycle during these n 

years.  
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This leads to an inter-dependence of three key model parameters R, 𝑋0 and 𝑃0. In the interest of simplicity, and 

as a first attempt for fitting the model, two approaches have been taken for the results presented in this 

document. 

1. The annual proportion of calving females that will enter a three-year calving cycle (𝑝𝑦) is assumed to 

be constant with time. 𝑃0 is fixed at a range of values, R is estimated freely, and 𝑋0 is determined by 

the values of 𝑃0 and R (see the Appendix for further details). 

2. The juvenile mortality (plus proportion of calves that are female) parameter (𝑋𝑦) is assumed to be 

constant with time. 𝑋0 is fixed at a range of values, R is estimated freely, and 𝑃0 is determined by the 

values of 𝑋0 and R. 

Results are presented for five runs – runs 1a and b as per approach (1) above for two different values of 𝑃0, and 

runs 2a-c as per option approach (2) above for three different values of 𝑋0. 

Table 1 lists key parameter values and negative log-likelihood components for the five runs. Figure 1 plots the 

estimated population trajectories, as well as the trajectories for 𝑋𝑦 and 𝑝𝑦. 

Discussion 

Some key discussion points are provided in bullet point form below. 

• Approach (2) (a time-invariant proportion of births that are female and juvenile survival rate, 𝑋𝑦) seems 

in general to be able to provide better fits to the data. Furthermore approach (1) (constant proportion  

𝑝𝑦 of three-year calving cycles) appears to require a strong temporal trend in the 𝑋𝑦 parameter 

trajectory in order to fit the data, which may be beyond the range of biological plausibility. For these 

reasons, it would seem that approach (2) is preferable to approach (1), having greater “flexibility”. 

• A key feature in the South African right whale data is the noticeable drop in calf counts in very recent 

years. Approach (2) tries to address that by substantially reducing the 𝑝𝑦 proportions in the most recent 

years considered in the model, i.e. it explains the reduction in calf counts by assuming that a large 

majority of adult females have entered five- rather than three-year cycles. This supposition can be 

validated only given future data, as it implies an expected imminent increase in number of calves over 

the next few years. 

• The impact of changing the adult survival rate assumed for these analyses (𝑆 = 0.97) needs to be 

explored. This value is somewhat lower than the value of 0.99 that has been estimated in the 

application of a more complex population model (using more detailed data) for the South African right 

whale population (Brandão et al 2018). The reason for the choice for this analysis was that the model 

exhibited slightly more stable behavior for this somewhat lower survival rate, given the 

interdependence of 𝑋0, 𝑃0, R and S for the initial year configuration of the model (see equation A4 of 

the Appendix). 

• Note that the scale of the abundance estimates output by the model is determined by the assumption 

that the calf counts do not miss any animals (and that there are no mortalities resulting from non-

natural causes). If the proportion missed remains about the same over time, abundance estimates 

would simply need to be scaled upwards by the inverse of that proportion; however, if there was a 

temporal trend in the proportion missed, the impact on results could be more complex. 

• Many more variations of these five runs could be explored (such as estimating both 𝑋𝑦 and 𝑝𝑦 and fixing 

R – though preliminary attempts at this suggest that the model has difficulties in distinguishing 

variations in 𝑋𝑦 from those in 𝑝𝑦 from the limited data – annual calf counts - available), but this 

document is primarily intended to outline the proposed model and to provide some preliminary results. 

Overall the fit of the model to the data (particularly for approach (2)) is not unreasonable, and the 

estimates of overall population size appear to be fairly consistent across the five variants, suggesting 

that the model has some potential to be used as a common widely applicable model for the right whale 

populations. However, further exploration and development, as well as trial applications to other right 

whale populations, should first be pursued.  
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• For applications to other right whale populations, the following information would need to be provided: 

o a few values (considered to be plausible) for the non-juvenile survival rate 𝑆;  

o a value for the age at first parturition 𝑡𝑚; and 

o a time series of annual calf counts (desirably complete, though the approach can accommodate 

missing values for a few of the years). 

Reference 

Brandão, A., Vermeulen, E., Ross-Gillespie, A., Findlay, K. and Butterworth, D.S. 2018. Updated application of a 

photo-identification based assessment model to southern right whales in South African waters, 

focussing on inferences to be drawn from a series of appreciably lower counts of calving females over 

2015 to 2017. International Whaling Commission: SC/67b/SH22: 18pp.  
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Table 1: Summary of results for the five runs presented in this document. The first two runs (1a and b), fix the 
value of 𝑃0 (the value of 𝑝𝑦 prior to 𝑦0, where 𝑦0 is the first year for which data are available), 

estimate R and allow 𝑋𝑦 to vary after 𝑦0 (the value of 𝑋𝑦 prior to 𝑦0 (𝑋0) is determined by 𝑃0 and R, 

see the Appendix for more details). The next set of three runs (2a-c) fix the value of 𝑋0, estimate R 
and allow 𝑃𝑦 to vary after 𝑦0. Analogous to the first two runs, the value of 𝑃0 is determined by the 

values of 𝑋0 and R. In the table below, the symbols are defined as follows: 

𝑃0 is the value of 𝑝𝑦 prior to 𝑦0 (the first year for which there are data), i.e. the proportion of calving females 

entering a three-year (rather than five year) cycle prior to 𝑦0, 
𝜇𝑝 is the mean of 𝑝𝑦 after 𝑦0, 

𝑋0 is the value of 𝑋𝑦 prior to 𝑦0, i.e. the value of the variable taking juvenile survival rate and proportion of 

calves that are female into account prior to 𝑦0, 
𝜇𝑋 is the mean of 𝑋𝑦 after 𝑦0, 

𝜎𝑋and 𝜎𝑝 are the variance parameters for the fluctuations about the means for 𝑋𝑦and 𝑝𝑦 post year 𝑦0 (see 

the Appendix for more details), 
R is the constant growth rate assumed for the initial period prior to 𝑦0, 
Δ𝑙𝑛𝐿 (𝑡𝑜𝑡𝑎𝑙) gives the difference in total negative log-likelihood points between run 1a and the rest, 
Δ𝑙𝑛𝐿 (𝑑𝑎𝑡𝑎) gives the difference in negative log-likelihood points for the data component between run 1a 

and the rest, and  
Δ𝑙𝑛𝐿 (𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠) gives the different in total negative log-likelihood points for the combined penalties 

between run 1a and the rest. 

Run 𝑃0 𝜇𝑝 𝑋0 𝜇𝑋 𝜎𝑋 𝜎𝑃 R Δ𝑙𝑛𝐿 (𝑡𝑜𝑡𝑎𝑙) Δ𝑙𝑛𝐿 (𝑑𝑎𝑡𝑎) Δ𝑙𝑛𝐿 (𝑝𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠) 

1a 1.00 1.00 0.33 0.28 0.5 0.5 1.054 0.0 0.0 0.00 

1b 0.60 0.60 0.38 0.34 0.5 0.5 1.050 15.9 17.4 -1.50 

2a 0.57 0.58 0.40 0.40 0.5 0.5 1.052 -66.1 -67.3 1.21 

2b 0.66 0.69 0.35 0.35 0.5 0.5 1.046 -73.8 -78.1 4.36 

2c 0.71 0.77 0.30 0.30 0.5 0.5 1.038 -53.3 -59.6 6.35 
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Figure 1: Some graphical output for the five runs presented in this document. The top row shows the population trajectories (in numbers) of the total female population 

past the age at first parturition (𝑁𝑦
𝑡), and for the number of females calving each year (𝑁𝑦

𝑐). The data to which the model is fit (the counts of number of calves per 

year) are shown by the closed circles. The vertical dashed lines mark the year 𝑦0 = 1979, the first year for which data are available. The second row shows the 
estimates of 𝑋𝑦 (combination of juvenile survival rate and proportion of calves that are females) and the bottom row the estimates of 𝑝𝑦 (the proportion of 

calving females each year entering into a three-year calving cycle). The estimated values of the growth rate R and the total negative log-likelihoods are shown in 
the bottom left corners. 
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Appendix 

Methodology for the proposed right whale common model 

The total female population in year y+1 is given by: 

 
𝑁𝑦+1

𝑡 = 𝑁𝑦
𝑡𝑆 + 𝑁𝑦−𝑡𝑚+1

𝑐 𝑆𝑡𝑚𝑋𝑦−𝑡𝑚+1 (A1) 

where 

𝑁𝑦
𝑡 is the total female population past the age at first parturition in year y, 

𝑁𝑦
𝑐 is the number of females calving in year y, 

𝑆 is the non-juvenile survival rate, 
𝑡𝑚 is the age at first parturition, and  
𝑋𝑦 is an additional (possibly time-varying) parameter to take juvenile (first year) survival into account. 

Xy needs to be less than 0.50 to account (at least) for the proportion of calves that are female. 

𝑁𝑦−𝑡𝑚+1
𝑐 𝑆𝑡𝑚𝑋𝑦−𝑡𝑚+1 is thus the number of female calves that were born 𝑦 − 𝑡𝑚 + 1 years ago and have now 

reached the age at first parturition. 

To calculate the number of calving females in year y, and assumption needs to be made regarding calving 

interval. For this proposed model, it is assumed that each female will reproduce either after a three-year or a 

five-year interval. Then:  

 𝑁𝑦
𝑐 = 𝑁𝑦−3

𝑐 𝑝𝑦−3𝑆3 + 𝑁𝑦−5
𝑐 (1 − 𝑝𝑦−5)𝑆5 + 𝑁𝑦−𝑡𝑚

𝑐 𝑋𝑦−𝑡𝑚
𝑆𝑡𝑚  (A2) 

where 𝑝𝑦 is the proportion calving each year which will take 3 years until they calve again. Therefore, in equation 

(A2) above: 

𝑁𝑦−3
𝑐 𝑝𝑦−3𝑆3 is the number of females that calved three years ago which (a) took a three-year 

calving interval to reproduce again and (b) survived the three years since last calving, 

𝑁𝑦−5
𝑐 (1 − 𝑝𝑦−5)𝑆5 is the number of females that calved five years ago and which (a) didn’t take a 

three-year calving interval (which by assumption implies they took a five-year 
interval) and (b) survived the five years since last calving, and 

𝑁𝑦−𝑡𝑚
𝑐 𝑋𝑦−𝑡𝑚

𝑆𝑡𝑚  is the number of females reaching age at first parturition in year y (i.e. the 
assumption is made that all females at age of first parturition will produce a calf). 

Initial situation (before year 𝒚𝟎) 

Start the model some n years before the actual first year of interest, 𝑦0, and assume the following for those n 

years. 

1. The total number of adult females in year (𝑦0 − 𝑛) is an estimable parameter. 

2. Each year a constant proportion 𝜌 of the total population is calving, i.e. 𝑁𝑦
𝑐 = 𝜌𝑁𝑦

𝑡. 

3. The proportion of females in three-year calving cycles is constant, i.e. 𝑝𝑦+1 = 𝑝𝑦 = 𝑃0. 

4. The juvenile mortality and female ratio variable 𝑋𝑦 is constant, 𝑋0. 

5. The population is growing at a steady rate R so that 𝑁𝑦+1
𝑡 = 𝑅𝑁𝑦

𝑡 and 𝑁𝑦+1
𝑐 = 𝑅𝑁𝑦

𝑐.  

With these assumptions, equation (A2) becomes: 

 

𝑁𝑦
𝑐 =

𝑁𝑦
𝑐

𝑅3
𝑃0𝑆3 +

𝑁𝑦
𝑐

𝑅5
(1 − 𝑃0)𝑆5 +

𝑁𝑦
𝑐

𝑅𝑡𝑚
𝑋0𝑆𝑡𝑚 (A3) 
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Therefore 𝑋0 can be calculated as: 

 

𝑋0 = (1 −
𝑆3

𝑅3
𝑃0 −

𝑆5

𝑅5
(1 − 𝑃0)) / (

𝑆𝑡𝑚

𝑅𝑡𝑚
) (A4) 

Furthermore, under the assumption that 𝑁𝑦
𝑐 = 𝜌𝑁𝑦

𝑡, equation (A1) can be re-written as: 

 
𝑅𝑁𝑦

𝑡 = 𝑁𝑦
𝑡𝑆 +  𝜌𝑁𝑦

𝑡𝑆𝑡𝑚𝑋0/(𝑅𝑡𝑚−1) (A5) 

From this,  

 
𝜌 = 𝑅𝑡𝑚−1(𝑅 − 𝑆)/(𝑆𝑡𝑚𝑋0) (A6) 

Model set-up post 𝒚𝟎 

The calculations above provide the values for 𝑁𝑦
𝑡, 𝑁𝑦

𝑐, 𝑝𝑦and 𝑋𝑦 for the n years prior to 𝑦0. From 𝑦0 onwards, 

equations (A1) and (A2) are used to calculate the population dynamics. The parameters 𝑋𝑦 and 𝑝𝑦 are estimated 

as a mean value with annual residuals that are assumed to be normally distributed with a mean of zero and a 

standard deviation of 𝜎𝑋 and 𝜎𝑝 – more details can be seen in the table below. 

Model parameters 

The table below lists key model parameters along with further details. 

Parameter Fixed/Estimable 

𝑙𝑛𝑁𝑦0−𝑛
𝑡  

Total female population size in start year, n years before the 
first year for which data are available (𝑦0 = 1979) for SA 
right whales. Estimated in log space. 

Estimable. For the 
results in this paper n is 
set at 20 years. 

𝑃0 
The constant value of 𝑝𝑦 assumed for the initial set-up, n 

years before 1979. 

Fixed on input 

𝑆 Non-juvenile survival rate Fixed (at 0.971) 

𝑡𝑚 Age at first parturition Fixed (at 5 years2) 

𝑋𝑦 =
0.5

1 + 𝑒−𝑋𝑦
∗  

Parameter to take additional juvenile mortality into account 
as well as the proportion of calves that are female. The 
estimable parameter is 𝑋𝑦

∗, estimated in logit space so that 

𝑋𝑦 lies between 0 and 0.5, as the female proportion is 

assumed not to exceed 0.5 . 

Estimable 

𝑋𝑦
∗ = 𝜇𝑋 + 𝜖𝑦

𝑋 
The model estimates a mean for 𝑋𝑦

∗  and residuals 𝜖𝑦
𝑋, where 

𝜖𝑦
𝑋~𝑁(0, 𝜎𝑋

2), with 𝜎𝑋fixed on input. 

Estimable mean and 
fixed standard deviation 

𝑝𝑦 =
1

1 + 𝑒−𝑝𝑦
∗  

The proportion of adult females calving each year that will 
take three years until they calve again. Similar to X, the 
estimable parameter is 𝑝𝑦

∗ , estimated in logit space so that 𝑝𝑦 

lies between 0 and 1. 

Estimable 

𝑝𝑦
∗ = 𝜇𝑝 + 𝜖𝑦

𝑝
 

The model estimates a mean for 𝑝𝑦
∗  and residuals 𝜖𝑦

𝑝
, where 

𝜖𝑦
𝑝

~𝑁(0, 𝜎𝑝
2), with 𝜎𝑝fixed on input. 

Estimable mean and 
fixed standard deviation 

Data and likelihood 

The model is fit to number of calves seen each year assuming a Poisson distribution: 

 −𝑙𝑛𝐿 = −𝑁𝑦
𝑐,𝑜𝑏𝑠𝑙𝑛𝑁𝑦

𝑐 + 𝑁𝑦
𝑐  (A7) 

 
1 This value is somewhat lower than the 0.99 estimated in Brandão et al. (2018), and was chosen to provide 
greater stability for these initial explorations. 
2 See Brandão et al. (2018). 
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where 

𝑁𝑦
𝑐,𝑜𝑏𝑠 is the number of calves (male and female) observed in year y, and 

𝑁𝑦
𝑐 is the number of females calving in year y. 

In addition, a penalty is added to the negative log-likleihood for each of the 𝑋𝑦 and 𝑝𝑦 parameters so that the 

estimated residuals correspond roughly to a normal distribution with their mean “forced” to be zero. 

 

𝑝𝑒𝑛𝑋 = 𝑤𝑋 (∑ 𝜖𝑦
𝑋

𝑦

)

2

+ ∑(𝜖𝑦
𝑋)

2
/(2𝜎𝑋

2)

𝑦

 (A8) 

and similarly 

 

𝑝𝑒𝑛𝑝 = 𝑤𝑝 (∑ 𝜖𝑦
𝑝

𝑦

)

2

+ ∑(𝜖𝑦
𝑝

)
2

/(2𝜎𝑝
2)

𝑦

 (A9) 

Lastly, penalties are added to the negative log-likelihood to force some continuity in 𝑋𝑦 and 𝑝𝑦 when 

transitioning from the initial setup (before 𝑦0) to the post-𝑦0 model dynamics. 

 
𝑝𝑒𝑛𝑋,𝑐𝑜𝑛𝑡 = (𝑋0 −

1

10
∑ 𝑋𝑦

𝑦0+9

𝑦0

)

2

/(2(0.01)2) (A10) 

 
𝑝𝑒𝑛𝑝,𝑐𝑜𝑛𝑡 = (𝑃0 −

1

10
∑ 𝑝𝑦

𝑦0+9

𝑦0

)

2

/(2(0.01)2) (A11) 

 

 

 

 

 

 

 


