Update to the hake Reference Case model incorporating the 2019 commercial and 2020 survey data

A. Ross-Gillespie and D.S. Butterworth¹

Summary

The Reference Case Ricker model is updated with 2019 commercial and 2020 survey data. The updated data points lie within the bounds predicted by OMP2018 projections, except for the proportion of *M. capensis* in the South Coast offshore trawl fishery catch, which continues to lie outside the 95% probability envelope predicted by OMP2018, as it did for the 2019 RC. The updated assessment results are compatible with the previous (2019) Reference Case results and suggest a continued steady increase in spawning biomass since for *M. capensis* but a small decrease for *M. paradoxus*.

Key words: hake, assessment, 2020 update, South Africa

Introduction

The current (2019) Reference Case assessment model (the Ricker-like model with a central catch year of 1958), is updated with the latest available commercial and survey data. Survey abundance indices from the 2020 summer survey have been included² (T. Fairweather, *pers. comm.*). Commercial catches are included to 2019 and the commercial CPUE has been re-standardised using data from 1978-2019 and applying the Model A6b species splitting algorithm (J. Glazer *pers. comm.*). Further updates to survey proportions-at-length and commercial catches-at-age are currently not available³. The updated data used for this assessment are presented in Appendix A.

During a comparison exercise with OLRAC, two minor coding glitches in the 2019 Reference Case model were uncovered, which have now been corrected: (a) recruitment residuals had accidentally been estimated to 2017 instead of 2018 (should be to the last year of model, less one); and (b) a coding glitch in summing the catches-at-length for the plus group was corrected. These corrections had minimal impact on the assessment results.

Results

Results have been presented for three assessment models.

- (1) 2019 RC: The RC as last presented to the DWG in 2019 (FISHERIES/2019/OCT/SWG-DEM/22rev).
- (2) **2019 RC corrected:** The update to the 2019 RC that incorporates corrections to the two minor coding glitches listed above.
- (3) **2020 RC:** The 2020 updated RC, which uses the same methodology as model (2), but incorporates the 2019-2020 data update.

¹ Marine Resource Assessment and Management Group, Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701.

² No autumn survey was conducted during 2020.

³ For the results presented in this paper, survey proportions-at-length to 2019 and commercial catches-at-length to 2016 have been used.

Table 1 lists the key outputs for these three assessment models. Table 2 gives a break-down of the negative log-likelihood components for the models.

Figure 1 shows the spawning biomass trajectories for both species in absolute and relative terms. Figure 2 plots the estimated stock-recruitment relationships, recruitment time series and standardized recruitment residuals. Figure 3 shows the fits to the commercial CPUE data, while Figure 4 shows the fits to the survey relative abundance estimates.

Discussion

A few key points arising from the results are discussed below.

Data updates

- Appendix B superimposes the updated commercial and survey data points onto the OMP2018 projections to ascertain whether these points lie within the range projected by the OMP when simulation tested, or whether Exceptional Circumstances should perhaps be triggered. The commercial CPUE and survey abundance estimates all lie within the error bounds projected by the OMP. The 2019 proportion of *M. capensis* catch in the South Coast offshore catch continues to be higher than expected and outside the 95% probability bound, but a little lower and now closer to the upper 95% probability bound than it was in 2018. These figures have already been presented to the Demersal Working group (FISHERIES/2020/OCT/SWG-DEM/23rev), and it was decided then that possible concern arising from this higher proportion was not sufficient to trigger Exceptional Circumstances.
- Commercial CPUE estimates for both species and both coasts are lower in 2019 than in 2018. The 2020 summer survey abundance estimate for *M. paradoxus* is very similar to the 2019 estimate, but the 2020 *M. capensis* survey abundance estimate is higher than the 2019 estimate.

Assessment update

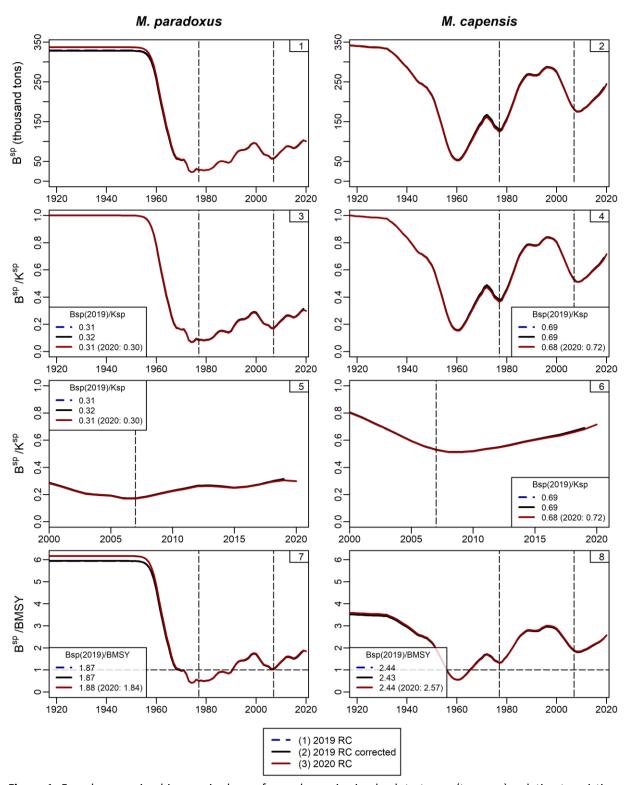
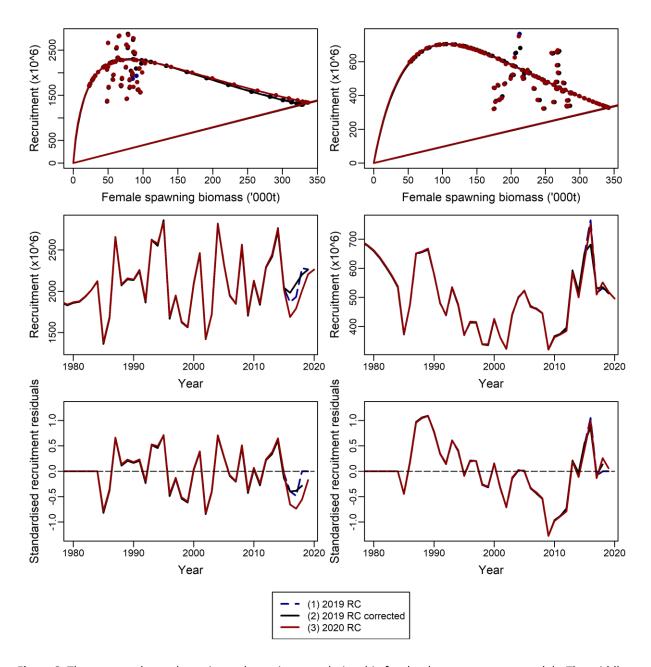
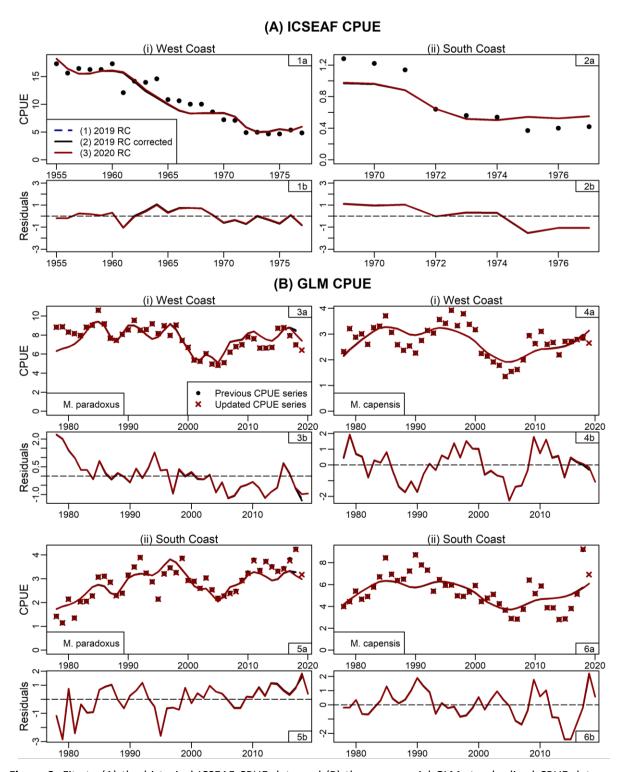
- The 2020 Hake RC results are very similar to the 2019 Hake RC results.
- The assessment results suggest a continued steady increase in spawning biomass for *M. capensis* (increasing from 0.68 relative to *K*^{sp} in 2019 to 0.72 in 2020). *M. paradoxus* has shown a small decrease from 0.32 in 2019 to 0.30 in 2020.

Table 1: Key assessment outputs for the models reported upon in this document. The first column (1) lists the results for the RC assessment model in 2019 as they were reported on in FISHERIES_2019_OCT_SWG-DEM_22rev. The second column (2) shows results for a subsequent update incorporating corrections to some minor coding glitches. The final column shows the results for the 2020 Reference Case model, which uses the same methodology as (2), but with the 2019-2020 data updates included.

		(1) 2019 RC	(2) 2019 RC corrected	(3) 2020 RC
	InLtotal	-3253.87	-3254.01	-3257.96
	K ^{sp}	329	328	337
	B ^{sp} _{MSY}	55	55	55
Sr	B ^{sp} ₂₀₁₉	104	103	103
λοκ	B^{sp}_{2019}/K^{sp}	0.31	0.32	0.31
arα	$B^{sp}_{2019}/B^{sp}_{MSY}$	1.87	1.87	1.88
M. paradoxus	B ^{sp} ₂₀₂₀	-	-	101
>	B^{sp}_{2020}/K^{sp}	-	-	0.30
	$B^{sp}_{2020}/B^{sp}_{MSY}$	-	-	1.84
	MSY	142	142	139
	K ^{sp}	342	342	341
	B ^{sp} _{MSY}	96	97	95
S	B ^{sp} ₂₀₁₉	235	236	232
ensi	B ^{sp} ₂₀₁₉ /K ^{sp}	0.69	0.69	0.68
аре	$B^{sp}_{2019}/B^{sp}_{MSY}$	2.44	2.43	2.44
M. capensis	B ^{sp} ₂₀₂₀	-	-	244
	B^{sp}_{2020}/K^{sp}	-	-	0.72
	$B^{sp}_{2020}/B^{sp}_{MSY}$	-	-	2.57
	MSY	82	82	81

Table 2: Negative log-likelihood components for the three assessment model runs reported in this document. Cells in grey indicate that those components are not comparable for the 2020 update in relation to the earlier models, because of the additional data included in this update. The likelihood components for Models (1) and (2) are all comparable.

Run	GLM CPUE	ICSEAF CPUE	Survey abun.	Comm. CAL	Survey CAL	Recruit. resid.	ALKs	Penalties	Total (w/o pen.)
(1) 2019 RC	-215.33	-36.86	-35.28	-1514.93	-1591.28	8.93	130.78	0.12	-3253.99
(2) 2019 RC corrected	-215.42	-36.86	-35.51	-1514.91	-1590.76	8.80	130.65	0.12	-3254.01
(3) 2020 RC	-221.14	-37.21	-37.50	-1510.88	-1591.19	9.35	130.61	0.10	-3257.96

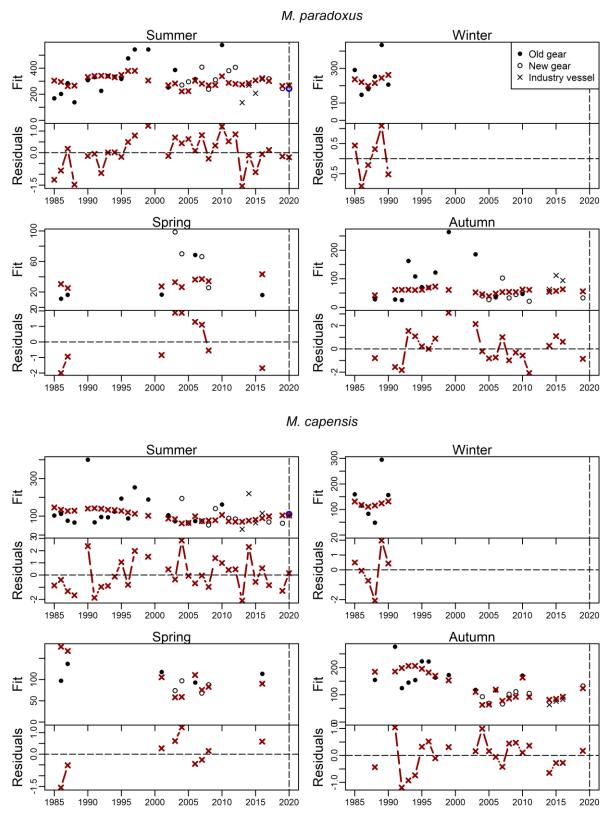

Figure 1: Female spawning biomass is shown for each species in absolute terms (top row), relative to pristine spawning biomass (second row), relative to pristine spawning biomass but for the 2000-2020 time period (third row) and relative to B_{MSY} (fourth row).

Figure 2: The top row shows the estimated recruitment relationship for the three assessment models. The middle row plots the recruitment time series, while the bottom row shows the standardized estimated recruitment residuals.

Figure 3: Fits to (A) the historical ICSEAF CPUE data and (B) the commercial GLM-standardized CPUE data are shown. For the GLM CPUE, the series used to date (which include data from 1978-2018) are indicated by black filled circles, while the updated 2019 series (data from 1978-2019) are indicated by red crosses.

Figure 4: Fits to the survey relative abundance series are shown for the 2020 RC assessment model. The 2020 summer survey abundance estimates are indicated by the last open circle in each respective plot (blue in colour). Standardised residuals are shown underneath each plot.

Appendix A

This Appendix lists data series which have been updated with new 2019 and 2020 data, namely the commercial catches and GLM-standardized CPUE series, and the survey relative abundance series. No catch-at-length proportion data have been updated at this point.

Table A.1: Species-disaggregated catches (in thousand tons) by fleet of South African hake from the south and west coasts for the period 1978-2019 (J. Glazer, *pers. comm.*). The new 2019 catch data have been highlighted grey.

	M. paradoxus			<i>M. capensis</i> Offshore Inshore Longline Handline						
	Offshore		Longline		Offs	Offshore		Longline		Handline
	WC	SC	WC	SC	WC	SC	SC	WC	SC	SC
1978	101.042	3.220	-	-	26.470	4.365	4.931	-	-	-
1979	94.331	1.924	-	-	39.192	4.995	6.093	-	-	-
1980	99.654	2.206	-	-	33.873	4.254	9.121	-	-	-
1981	88.883	0.910	-	-	32.048	4.575	9.400	-	-	-
1982	83.618	3.353	-	-	29.732	8.005	8.089	-	-	-
1983	71.238	4.723	0.126	-	23.195	7.792	7.672	0.104	-	-
1984	82.358	3.796	0.200	0.005	28.897	7.139	9.035	0.166	0.011	-
1985	94.428	8.059	0.638	0.091	30.642	11.957	9.203	0.529	0.201	0.065
1986	103.756	8.580	0.753	0.094	30.049	7.385	8.724	0.625	0.208	0.084
1987	93.517	7.459	1.952	0.110	24.008	8.225	8.607	1.619	0.243	0.096
1988	79.913	5.876	2.833	0.103	26.669	8.640	8.417	2.350	0.228	0.071
1989	82.230	6.182	0.158	0.010	25.029	12.730	10.038	0.132	0.022	0.137
1990	81.996	9.341	0.211	-	21.640	13.451	10.012	0.175	-	0.348
1991	87.093	12.448	-	0.932	19.357	9.626	8.206	-	2.068	1.270
1992	84.768	17.297	-	0.466	18.519	9.165	9.252	-	1.034	1.099
1993	102.125	9.880	-	-	15.940	4.380	8.870	-	-	0.278
1994	103.541	6.726	0.882	0.194	20.327	4.326	9.569	0.732	0.432	0.449
1995	100.268	4.004	0.523	0.202	20.629	3.146	10.630	0.434	0.448	0.756
1996	107.381	8.966	1.308	0.568	21.794	4.323	11.062	1.086	1.260	1.515
1997	100.654	10.509	1.410	0.582	16.500	5.327	8.834	1.170	1.290	1.404
1998	111.154	9.742	0.505	0.457	16.499	4.411	8.283	0.419	1.014	1.738
1999	88.581	11.420	1.532	1.288	15.179	3.926	8.595	1.272	2.856	2.749
2000	96.587	7.700	2.706	3.105	21.114	5.830	10.906	2.000	1.977	5.500
2001	101.247	7.850	1.417	0.084	16.349	8.306	11.836	2.394	1.527	7.300
2002	91.207	12.443	4.469	1.585	13.724	6.141	9.581	2.391	2.546	3.500
2003	93.711	17.397	3.305	1.252	11.665	7.636	9.883	2.526	3.078	3.000
2004	85.722	26.065	2.855	1.196	12.510	8.704	10.004	2.297	2.731	1.600
2005	85.869	21.778	3.091	0.472	9.398	7.468	7.881	2.773	3.270	0.700
2006	81.513	18.050	3.241	0.485	11.984	6.578	5.524	2.520	3.227	0.400
2007	92.724	13.488	2.512	3.021	16.145	3.757	6.350	2.522	2.522	0.400
2008	85.538	13.191	2.255	0.809	13.838	4.316	5.496	1.937	1.893	0.231
2009	68.202	10.895	2.410	1.069	12.296	4.806	5.639	2.828	2.520	0.265
2010	69.709	15.457	2.394	1.527	10.186	4.055	5.472	3.086	3.024	0.275
2011	76.576	17.904	2.522	0.140	15.673	4.086	6.013	3.521	3.047	0.186
2012	81.411	16.542	4.358	0.306	12.928	4.584	3.223	2.570	1.737	0.008
2013	74.341	28.859	6.056	0.060	8.761	4.475	2.920	2.606	1.308	0.000
2014	73.252	41.156	6.879	0.008	9.671	6.286	2.965	2.123	0.315	0.001
2015	77.521	31.745	4.001	0.018	12.727	4.035	3.077	2.325	0.053	0.001
2016	93.173	18.968	2.806	0.001	14.744	2.810	3.973	4.360	0.002	0.001
2017	72.326	30.961	5.288	0.025	15.273	4.466	2.812	2.807	0.126	0.004
2018	64.252	29.218	5.156	0.089	12.689	12.863	3.983	2.615	0.481	0.024
2019	71.050	22.201	3.177	0.020	13.750	9.454	4.149	2.160	0.179	0.009

 $FISHERIES/2021/JUN/SWG-DEM/07 \\ \textbf{Table A.2: GLM standardized CPUE data for \textit{M. paradoxus} and \textit{M. capensis}, corresponding to the Model A6b species splitting}$ algorithm applied to data from 1978-2019 (J. Glazer, pers. comm.).

	GLM CPUE (kg min ⁻¹)							
	М. раг	radoxus	M. capensis					
Year	West Coast	South Coast	West Coast	South Coast				
1978	8.82	1.41	2.32	3.98				
1979	8.87	1.14	3.21	4.43				
1980	8.30	2.14	2.88	5.39				
1981	8.14	1.34	3.01	4.65				
1982	7.95	2.03	2.60	4.90				
1983	8.81	2.04	3.25	5.76				
1984	9.01	2.27	3.30	6.70				
1985	10.60	3.06	3.71	8.43				
1986	9.17	3.10	3.07	6.93				
1987	7.66	2.85	2.59	6.36				
1988	7.44	2.29	2.37	6.49				
1989	8.07	2.39	2.54	7.23				
1990	8.54	3.15	2.26	8.70				
1991	9.54	3.49	2.75	7.78				
1992	8.49	3.88	3.14	7.31				
1993	8.58	3.23	3.04	5.39				
1994	9.17	2.87	3.56	6.45				
1995	8.15	2.14	3.42	5.94				
1996	8.98	3.20	3.92	5.95				
1997	7.96	3.45	3.33	4.97				
1998	9.05	3.25	3.79	4.91				
1999	7.43	3.85	3.38	5.31				
2000	6.70	2.92	3.18	5.91				
2001	5.37	2.89	2.25	4.45				
2002	5.24	2.59	2.14	4.77				
2003	6.04	3.03	1.92	5.10				
2004	4.95	2.53	1.78	4.24				
2005	4.82	2.17	1.35	3.66				
2006	5.10	2.27	1.55	2.89				
2007	6.20	2.38	1.62	2.83				
2008	6.77	2.46	2.00	3.73				
2009	6.97	2.92	2.93	6.41				
2010	7.78	3.22	2.62	5.18				
2011	7.61	3.75	3.10	5.87				
2012	6.64	3.34	2.61	3.87				
2013	6.64	3.71	2.67	3.87				
2014	6.70	3.48	2.19	2.80				
2015	8.70	3.30	2.71	2.85				
2016	8.77	3.41	2.71	3.80				
2017	7.92	3.76	2.78	5.11				
2018	6.96	4.23	2.85	9.24				
2019	6.41	3.17	2.65	6.92				

Table A.3a: Survey abundance estimates and associated standard errors in thousand tons for *M. paradoxus* for the depth range 0-500m for the South Coast and for the West Coast (T. Fairweather, *pers. comm.*). Values in bold are for the surveys conducted by the *Africana* with the new gear, while underlined values are for the surveys conducted by the *Andromeda* and in 2016 by the *Compass Challenger*. The 2016 spring survey was conducted by the *Africana* - the abundance estimates for this survey were previously unavailable, but have now been included. Grey highlighting has been used to indicate new data points that have been added.

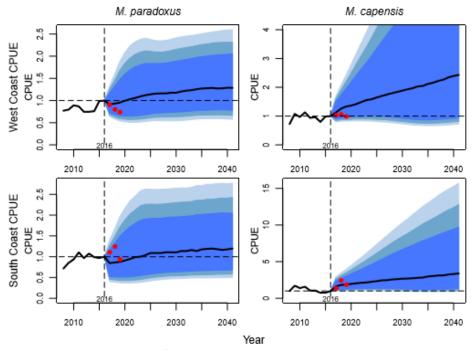
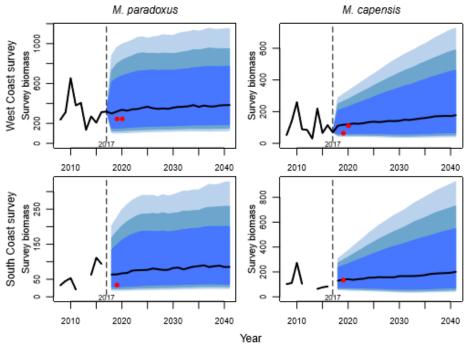

			t coast		South coast					
Year	Sum	nmer		nter	Spring		Autumn (A	pr/May)		
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)		
1985	168.989	(37.765)	290.281	(63.295)	-	-	-	-		
1986	202.334	(37.745)	147.378	(21.667)	11.280	(3.111)	-	-		
1987	284.434	(54.165)	180.158	(39.047)	16.381	(3.033)	-	-		
1988	138.534	(20.303)	252.121	(71.246)	-	-	28.293	(8.673)		
1989	-	-	434.092	(142.716)	-	-	-	-		
1990	307.615	(87.841)	205.704	(43.607)	-	-	-	-		
1991	331.177	(81.633)	-	-	-	-	27.570	(8.153)		
1992	225.755	(33.711)	-	-	-	-	25.036	(6.650)		
1993	340.079	(51.427)	-	-	-	-	162.375	(81.691)		
1994	333.499	(56.259)	-	-	-	-	108.179	(38.369)		
1995	317.104	(76.709)	-	-	-	-	70.890	(39.330)		
1996	474.270	(92.744)	-	-	-	-	68.859	(19.929)		
1997	543.615	(96.043)	-	-	-	-	121.707	(51.507)		
1998	-	-	-	-	-	-	-	-		
1999	542.830	(110.541)	-	-	-	-	263.256	(59.439)		
2000	-	-	-	-	-	-	-	-		
2001	-	-	-	-	16.668	(7.159)	-	-		
2002	251.820	(32.690)	-	-	-	-	-	-		
2003	386.321	(63.565)	-	-	98.434	(42.249)	185.345	(82.188)		
2004	271.540	(55.710)	-	-	70.001	(22.156)	39.822	(22.153)		
2005	296.065	(42.409)	-	-	-	-	26.691	(6.017)		
2006	316.247	(57.332)	-	-	68.507	(18.283)	34.868	(5.843)		
2007	407.377	(77.222)	-	-	66.267	(21.966)	102.195	(53.688)		
2008	238.143	(37.018)	-	-	25.661	(8.324)	33.034	(9.340)		
2009	310.760	(27.768)	-	-	-	-	45.030	(15.551)		
2010	576.848	(88.202)	-	-	-	-	46.938	(12.160)		
2011	380.185	(128.013)	-	-	-	-	21.054	(6.531)		
2012	405.865	(59.099)	-	-	-	-	-	-		
2013	<u>136.260</u>	(25.116)	-	-	-	-	-	-		
2014	<u>269.482</u>	(37.492)	-	-	-	-	62.925	(24.802)		
2015	207.583	(24.057)	-	-	-	-	<u>111.411</u>	(51.852)		
2016	312.876	(33.250)	-	-	16.147	(6.862)	94.177	(51.731)		
2017	319.024	(58.766)	-	-	-	-	-	-		
2018	-	-	-	-	-	-	-	-		
2019	243.560	(51.558)		-	-	-	33.176	15.444		
2020	243.090	(43.989)	-	-	-	-	-	-		

Table A.3b: Survey abundance estimates and associated standard errors in thousand tons for *M. capensis*.


		West c	oast	South coast				
Year	Summer		Wir	nter	Spring (Sept)		Autumn (Apr/May)	
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)
1985	102.929	(18.888)	159.198	(18.982)	-	-	-	-
1986	113.154	(23.474)	115.218	(19.733)	96.768	(10.737)	-	-
1987	75.438	(9.709)	83.050	(10.306)	137.008	(13.057)	-	-
1988	66.365	(9.930)	48.046	(9.574)	-	-	154.548	(23.984)
1989	-	-	294.740	(67.495)	-	-	-	-
1990	400.142	(97.102)	156.337	(22.507)	-	-	-	-
1991	67.565	(9.656)	-	-	-	-	276.607	(25.274)
1992	95.401	(11.892)	-	-	-	-	124.495	(13.600)
1993	93.613	(14.390)	-	-	-	-	144.551	(12.379)
1994	124.497	(37.845)	-	-	-	-	153.790	(20.310)
1995	193.292	(24.270)	-	-	-	-	222.464	(31.245)
1996	87.969	(9.866)	-	-	-	-	222.176	(23.144)
1997	252.606	(42.721)	-	-	-	-	163.163	(17.274)
1998	-	-	-	-	-	-	-	-
1999	188.624	(31.362)	-	-	-	-	171.946	(13.330)
2000	-	-	-	-	-	-	-	-
2001	-	-	-	-	117.590	(20.093)	-	-
2002	105.093	(16.130)	-	-	-	-	-	-
2003	73.020	(12.518)	-	-	73.604	(9.142)	117.538	(17.192)
2004	194.294	(30.714)	-	-	96.933	(13.936)	92.796	(11.318)
2005	63.363	(11.498)	-	-	-	-	68.672	(5.302)
2006	73.655	(17.255)	-	-	92.831	(8.998)	116.298	(11.931)
2007	73.230	(9.306)	-	-	67.937	(6.553)	65.935	(5.303)
2008	52.577	(7.069)	-	-	87.836	(9.723)	102.169	(9.681)
2009	140.437	(26.486)	-	-	-	-	111.191	(10.832)
2010	162.402	(34.891)	-	-	-	-	170.261	(33.235)
2011	89.095	(23.574)	-	-	-	-	105.424	(10.688)
2012	84.746	(8.331)	-	-	-	-	-	-
2013	<u>30.383</u>	(4.575)	-	-	-	-	-	-
2014	<u>219.756</u>	(60.342)	-	-	-	-	63.389	(6.415)
2015	<u>65.086</u>	(9.178)	-	-	-	-	76.059	(6.873)
2016	<u>115.058</u>	(30.400)	-	-	113.384	(13.828)	<u>83.197</u>	(6.600)
2017	69.289	(14.486)	-	-	-	-	-	-
2018	-	-	-	-	-	-	-	-
2019	62.560	(7.697)		-	-	-	132.099	(14.486)
2020	109.983	(11.836)					-	-

Appendix B

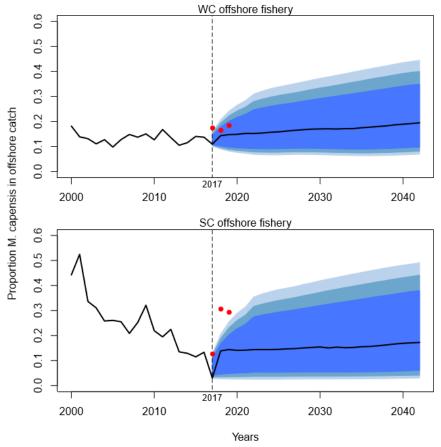

The 2019/2020 commercial and survey data updates have been superimposed into the OMP2018 projection plots to ascertain whether these points lie within the error range projected by the OMP.

Fig. B1: 95, 90, 80% PE and median for the projected GLM-standardised **commercial CPUE** for *M. paradoxus* and *M. capensis* for the updated RS under OMP-2018. The red dots show the 2017-2019 CPUE indices, standardised relative to the 2016 value in the updated GLM series.

Fig. B2: 95, 90, 80% PE and median for the **survey abundance indices** for *M. paradoxus* and *M. capensis* for the updated RS under OMP-2018. Gaps in the median trajectory for the South Coast survey indicate surveys that did not take place. Estimates from the 2019-2020 surveys are indicated by red dots. Note: future surveys are assumed to be carried out using the new gear on the *Africana*; if an industry vessel is used instead, the resultant estimates must be multiplied by 1.25 before comparison with the bounds in these plots.

Fig. B3: 95, 90, 80% PE and median for the proportion *M. capensis* in the offshore trawl catch, with the 2017-2019 observed proportions indicated by the red dots.