Some comments relating to the proposal by FISHERIES/2020/JUN/SWG-PEL/38rev

SWG-PEL Meeting 5th June 2020

Carryn de Moor

- Caution against the proposal to use exploitation rates (provided by comparison with other fisheries) to set the South African anchovy TAC
- TAC has been under caught for many years. The historical avg ER quoted by Bergh (2020) and SAPFIA (2020) (0.086) is not a reflection of the historical management of anchovy, but rather of realised catches, and based on an assessment using data up to 2015

- 200 000t TAC would correspond to an ER point estimate of 11-18% based on the 6 models of de Moor (2020b)
- Assuming DEPM no longer provides an absolute index of abundance (and subject to finalisation of the anchovy maturity ogives), the expected ER is as follows:

	200 000t	210 000t	220 000t	230 000t	240 000t	250 000t
-2SE of B						
-1SE of B						
ER MLE	0.12	0.13	0.13	0.14	0.15	0.15
+1SE of B						
+2SE of B						

- 200 000t TAC would correspond to an ER point estimate of 11-18% based on the 6 models of de Moor (2020b)
- Assuming DEPM no longer provides an absolute index of abundance (and subject to finalisation of the anchovy maturity ogives), the expected ER is as follows:

	200 000t	210 000t	220 000t	230 000t	240 000t	250 000t	
-2SE of B	0.23	0.24	0.25	0.26	0.28	0.29]
-1SE of B	0.16	0.17	0.18	0.18	0.19	0.20	
ER MLE	0.12	0.13	0.13	0.14	0.15	0.15	- 2
+1SE of B	0.10	0.10	0.11	0.11	0.12	0.12	
+2SE of B	0.08	0.09	0.09	0.10	0.10	0.10	

Uncertainty -> caution

- Final year estimates of biomass are typically more uncertain
- This provides additional uncertainty if trying to advise TACs based on a chosen/desired ER. The realised ER outcome could be different.
- Had ER been used to set anchovy TACs in the past, the realised ERs would have been 13-14% higher than desired.

	200 000t	210 000t	220 000t	230 000t	240 000t	250 000t
-2SE of B	0.23	0.24	0.25	0.26	0.28	0.29
-1SE of B	0.16	0.17	0.18	0.18	0.19	0.20
ER MLE	0.12 0.1	4 0.13 0.1	5 0.13 0.1!	$0.14^{0.1}$	6 0.15 ^{0.1}	0.15
+1SE of B	0.10	0.10	0.11	0.11	0.12	0.12
+2SE of B	0.08	0.09	0.09	0.10	0.10	0.10

MSC requirement $0.5xER_{MSY}$ = 0.5x0.24 = 0.12 (Bergh) = 0.5x0.18 = 0.09 (Hilborn et al. 2020)

Further uncertainty -> further caution

- RSA anchovy fishery is primarily a recruit fishery off the west coast.
- Setting a quota based on a desired/target ER of the adult November biomass (primarily Cape Point – Mossel Bay) -> substantial risk due to the disconnect between the November biomass and forthcoming recruitment.
- (Substantial disconnect between desired/target ER and realised ER on recruitment)
- ER of recruits frequently substantially higher than that of adults
- OMPs therefore typically set initial TACs lower to allow a buffer if recruitment is poor.
- Not directly comparable with ERs of other non-recruit fisheries which primarily remove catches from estimated biomass

- Doc #23 a 1st step to consider the impact (if any) of ER on subsequent anchovy biomass.
- If average ER impacts subsequent trends, then expect higher/lower avg ER to correspond with decreasing/increasing trends. Not the case for TB.
- Doc #38rev quotes avg ER of 0.25 (SSB) or 0.33 (TB) to correspond to increasing [sustainably fished] resources. But lower avg Ers correspond to decreasing [unsustainably fished] resources
- 2nd step not yet provided. Have requested shorter 'impact' periods be considered (short-lived species) and to separate results by stock status (e.g. increasing/decreasing trends v good/poor status)
- No method of trying to obtain information about 'acceptable' ERs from other anchovy fisheries has thus far proven satisfactory
- Doc #23 uses running 5-year means, Doc #38rev uses fixed 5/6-year bins results sensitive to the selection of time periods
- Figs 12&13 of Doc #38rev indicate low biomass results from higher ER

Dynamic B₀

- Dynamic B₀ currently being explored for RSA small pelagics to provide some info on
- i) the proportion of the historical trajectory that is due to fishing compared to that due to the environment
- ii) the possibility of (SS)B:Dynamic(SS)B₀ being used to provide TRPs in the future
- (i) commonly used in some tuna and small pelagic assessments elsewhere
- 'depletion' not always annual (SS)B_y:Dynamic(SS)B_{0y}, but rather (SS)B_y:RegimeDynamic(SS)B₀
- i.e. instead of SSB_{2019} :Dynamic $SSB_{02019} = 0.69$ and B_{2019} :Dynamic $B_{02019} = 0.70$, rather SSB_{2019} :Dynamic $SSB_{0(00-19)} = 0.33$ and B_{2019} :Dynamic $B_{0(00-19)} = 0.40$
- Berger (2019) considers Dynamic B₀ more useful for management of longer-lived than shorter-lived species! Contrary to our exploration of Dynamic B₀ for inter-annual changes in biomass due to highly variable environmentally-linked recruitment

Dynamic B₀

- Dynamic B₀ currently being explored for RSA small pelagics to provide some info on
- i) the proportion of the historical trajectory that is due to fishing compared to that due to the environment
- ii) the possibility of (SS)B:Dynamic(SS)B₀ being used to provide TRPs in the future
- Use of Dynamic B₀ to provide RPs for management purposes (ii) or stock status avoided thus far internationally
- Premature to compare Dynamic B₀ ratios to MSC's 0.75B₀
- Can't compare e.g. groundfish RPs to those of forage fisheries

FMSY

- Doc #38rev uses high steepness to calculate F_{MSY} (ASPM)
- More accurate steepness h=0.34 by this method gives $F_{MSY} = 0.30$ and $ER_{MSY} = 0.24$
- RSA anchovy steepness is low compared to all other assessments in RAM -> further reason to caution against trying to set RSA anchovy ER based on other fisheries
- More detailed analyses (Hilborn *et al.* 2020) estimated RSA anchovy $ER_{MSY} = 0.18$, but only used for stock status, considered too high as a RP

Some comments relating to the proposal by FISHERIES/2020/JUN/SWG-PEL/38rev

Thank you!