Updated simulation testing framework to be used during the development of OMP-18

C.L. de Moor*
Correspondence email: carryn.demoor@uct.ac.za

This document details the framework to be used to simulation test candidate MPs during the development of OMP-18. A summary of assumptions made in this simulation testing framework are listed below. Appendix A provides the full details, with data used listed in the tables at the end of the Appendix. This is a draft, as some parts of this framework may need modifying under alternative hypotheses or under alternative harvest control rules as the development of OMP-18 proceeds.

There are two main hypotheses for sardine: a single stock hypothesis or a two-mixing component hypothesis (with "west" and "south" sub-stocks). Two different types of candidate MPs have been proposed:
a) Candidate MPs which recommend a single directed $>14 \mathrm{~cm}$ sardine TAC and associated $\leq 14 \mathrm{~cm}$ sardine bycatch.
b) Candidate MPs which recommend a separate directed $>14 \mathrm{~cm}$ sardine TAC for west and south-east of Cape Agulhas, and an associated split in the $\leq 14 \mathrm{~cm}$ sardine bycatch.

All other sardine bycatches are assumed to be taken from the single or west sub-stock only.
There are therefore four alternative possible combinations of sardine TAC/B by area / stock:
i) A single area sardine TAC/B and a single sardine stock.
ii) A two-area sardine TAC/B and a single sardine stock.
iii) A single area sardine TAC/B and two sardine sub-stocks.
iv) A two-area sardine TAC/B and two sardine sub-stocks.

The following assumptions are made in the implementation simulation of Candidate MPs:
i) All sardine catch/bycatch is from the single stock
ii) The TAC/Bs are added and all catch/bycatch is from the single stock
iii) The TAC/Bs are split by sub-stock in a pre-defined year-specific proportion
iv) The TAC/B for west of Cape Agulhas is assumed taken from the west sardine sub-stock and the TAC/B for east of Cape Agulhas is assumed taken from the south sardine sub-stock.

Summary list of assumptions made in the framework to be used to simulation test OMP-18

1) Half the sardine is caught between 1 November and 30 April and half from 1 May to 31 October.

[^0]2) Half the juvenile anchovy is caught between 1 November and 30 June and half from 1 July to 31 October.
3) Half the adult anchovy is caught between 1 November and 31 March and half from 1 April to 31 October.
4) The assumptions made during the development of the underlying operating models (de Moor 2016b, de Moor and Butterworth 2016a,b), such as maturity ogives and stock-recruitment relationships and differences in these assumptions between alternative operating models (robustness tests), are carried forward during projections.
5) In the underlying operating model which assumes two sardine sub-stocks, the movement of west substock sardine to the south sub-stock in November is assumed either to be i) dependent on a relationship with the ratio of the south to west sub-stock total biomass from the previous November, or ii) random based on movement estimated between 2006 and 2015.
6) The recruit survey is simulated to commence mid-May each year.
7) All directed sardine catch and $>14 \mathrm{~cm}$ sardine bycatch with round herring and anchovy is split into age groups according to the selectivity-at-age estimated by the underlying operating model. The $>14 \mathrm{~cm}$ sardine TAB with round herring and anchovy, assumed to originate from the single or west component, is not always assumed taken; the bycatch is drawn from a distribution based on the historical bycatches with a maximum of $T A B_{y, b i g, r h}^{S}=7000 t$
8) All TABs for $\leq 14 \mathrm{~cm}$ sardine are assumed to consist of 0 -year-old sardine.
9) Half of the $\leq 14 \mathrm{~cm}$ sardine bycatch with round herring, $T A B_{y, s m a l l, r h}^{S}=1000 t$, assumed to originate from the single or west component, is caught by the time of the recruit survey (mid-May). This full TAB is simulated to be caught each year.
10) The maximum amount of $\leq 14 \mathrm{~cm}$ sardine bycatch in the directed ($>14 \mathrm{~cm}$) sardine catch used to set the sardine TAB, ω_{j}, is not always assumed taken; a proportion is drawn from a distribution based on the historical proportions with a maximum of ω_{j}. The historical proportions for the total area are used only for the single-area single-component scenario, while the historical proportions by west and south coasts are used for all other alternatives.
11) 60% of the $\leq 14 \mathrm{~cm}$ sardine bycatch with directed sardine is caught by the time of the recruit survey (mid-May).
12) Half of $T A B^{A}=500 t$ is taken by the end of June, with the remaining half taken by the end of the normal season.
13) The initial anchovy TAC, $T A C_{y}^{1, A}$, is caught by the end of June, and 76% of this is caught by the end of May with the remaining 24% caught during June.
14) 29% of the total anchovy catch landed by the end of June $\left(T A C_{y}^{1, A}+\frac{1}{2} T A B^{A}\right)$ are juveniles caught by mid-May.
15) The annual adult anchovy catch is 38% of the anchovy catch landed by the end of June ($\left.T A C_{y}^{1, A}+\frac{1}{2} T A B^{A}\right)$.
16) The juvenile ($\leq 14 \mathrm{~cm}$) sardine bycatch with anchovy is assumed to be taken from the single or west sardine component.
17) The juvenile ($<14 \mathrm{~cm}$) sardine bycatch with anchovy from January to 31 May is 1.327 times that from January to mid-May.
18) Juvenile ($<14 \mathrm{~cm}$) sardine bycatch with anchovy over the months of June to December is taken to be a proportion of the anchovy catch during these months, with the monthly proportions and variances being estimated from the monthly juvenile sardine to anchovy ratios, based upon historical catch monthly observations and draws from model predicted recruitment.
19) In the implementation of sardine bycatch with anchovy, correlations in the juvenile single stock or west component sardine to anchovy ratios apply between successive months only.
20) In the implementation of sardine bycatch with anchovy, 42% of the July to December anchovy catch is taken in July, 26\% in August and 20\% in September.
21) For all catches simulated, an upper limit is placed on the industry's efficiency by assuming that no more than 95% of the selectivity-weighted stock abundance may be caught.
22) The ratio of juvenile single stock or west component sardine to anchovy in May (and used in the Harvest Control Rule), r_{y}, is restricted to a maximum of 0.5 .
23) The ratios of juvenile single stock or west component sardine to anchovy in the months of June, July, August, September and October to December, used in simulating how much juvenile sardine is actually caught, are restricted to a maximum of 0.5 .
24) Implementation simulation does not account for the closure of the anchovy fishery if the initial sardine bycatch with anchovy allowance is reached (see de Moor and Butterworth 2012 for reasons), although the sardine bycatch is limited by this allowance.
25) Implementation simulation accounts for the closure of the anchovy fishery if the sardine bycatch with anchovy allowance is reached, by proportionally decreasing the amount of juvenile anchovy catch simulated to be taken within a year.
26) Future survey observations are generated taking the historical correlation between the single stock or west component sardine and anchovy into account, and the variance is based on a regression between historical survey CV and model predicted abundance.
27) Survey and catch-related observations already known for 2016 have been used instead of model simulated observations. The undercatch of the final anchovy TAC has been taken into account. The recruitment in November 2015, and the corresponding recruitment residual are obtained by combining information from both the stock recruitment relationship and the known June 2016 survey results.

Acknowledgements

Jan van der Westhuizen is thanked for providing monthly catch and bycatch data upon which many of the above assumptions have been based. Janet Coetzee, Dagmar Merkle and Johan de Goede are also thanked for providing some data used in the appendix. Doug Butterworth is thanked for input on some assumed relationship.

References

Coetzee, J.C., Merkle, D., Philips, M., Geja, Y., Mushanganyisi K., and Shabangu F. 2016a. Results of the 2016 pelagic recruitment survey. DAFF: Branch Fisheries Document FISHERIES/2016/JUL/SWGPEL/25rev.
Coetzee, J.C., Merkle, D., Geja, Y., Mushanganyisi K., and Shabangu F. 2016b. Results of the 2016 spawner biomass survey. DAFF: Branch Fisheries Document FISHERIES/2016/DEC/SWG-PEL/79.

Coetzee, J.C., Merkle, D., Mushanganyisi K., and Geja Y. 2017. Results of the 2017 pelagic recruitment survey. DAFF: Branch Fisheries Document FISHERIES/2017/JUL/SWG-PEL/21.
de Moor, C.L. 2016a. Final anchovy and sardine TACs and TABs for 2016, Using OMP-14. DAFF: Branch Fisheries Document FISHERIES/2016/JUL/SWG-PEL/26.
de Moor, C.L. 2016b. Assessment of the South African anchovy resource using data from 1984-2015: Results at the joint posterior mode. DAFF: Branch Fisheries Document FISHERIES/2016/OCT/SWGPEL/46.
de Moor, C.L. 2017. Final anchovy and sardine TACs and TABs for 2017, Using OMP-14. DAFF: Branch Fisheries Document FISHERIES/2017/JUL/SWG-PEL/22.
de Moor, C.L. 2017c. Posterior distributions of key model parameters from the assessment of the South African anchovy resource using data from 1984-2015. In prep.
de Moor, C.L. 2017d. Posterior distributions of key model parameters from the assessment of the South African sardine resource using data from 1984-2015. In prep.
de Moor, C.L. and Butterworth, D.S. 2016a. Assessment of the South African sardine resource using data from 1984-2015: Results at the joint posterior mode for the two mixing-stock hypothesis. DAFF: Branch Fisheries Document FISHERIES/2016/JUL/SWG-PEL/22REV2.
de Moor, C.L. and Butterworth, D.S. 2016b. Assessment of the South African sardine resource using data from 1984-2015: Results at the joint posterior mode for the single stock hypothesis. DAFF: Branch Fisheries Document FISHERIES/2016/JUL/SWG-PEL/23REV.
de Moor, C.L., Butterworth, D.S., and Coetzee J.C. 2016. Discussion of OMP-17 simulation projection framework in respect of sardine. DAFF: Branch Fisheries Document FISHERIES/2016/SEP/SWGPEL/43.

Appendix A: The framework used to simulation test a joint MP for South African sardine and anchovy: OMP-18

In this appendix, the framework used to simulation test OMP-18 is detailed. The framework consists of a population dynamics model for future simulation of the effects of alternative MPs on the sardine and anchovy populations, an implementation model which generates future catches-at-age given annual TAC/Bs, and an observation model which generates the necessary data (in this case, catch and survey data) to be input into the Harvest Control Rules. Catches-at-age are given in numbers of fish (billions), whereas the TACs and TABs are given in biomass (in thousands of tons). All parameters are listed in Table A1.

Population dynamics model

Given the numbers-at-age at the beginning of the projection period (i.e., November 2015), values for future catches output from the implementation model, $C_{j, y, a}^{i}, i=S, A$ (see below), the population dynamics model projects numbers-at-age and spawning biomass at the beginning of November for $2016 \leq y \leq 2036$ as follows. The sardine adult catch is assumed to be taken half way between $1^{\text {st }}$ November and $31^{\text {st }}$ October each year ${ }^{1}$. The anchovy juvenile catch is assumed to be taken as a pulse at $1^{\text {st }}$ July and the adult catch is assumed to be taken as a pulse at $1^{\text {st }}$ April. All notation allows for multiple components of both species, though only a single stock for anchovy is considered in all Operating Models (OMs).

Sardine: $\quad N_{j, y, 1}^{S, \text { pred }}=\left(N_{j, y-1,0}^{S, \text { pred }} e^{-M_{j u}^{S} / 2}-C_{j, y, 0}^{S, p r e d}\right) e^{-M_{j u}^{S} / 2}$

$$
N_{j, y, a}^{S, p r e d}=\left(N_{j, y-1, a-1}^{S, p r e d} e^{-M_{a d}^{S} / 2}-C_{j, y, a-1}^{S, p r e d}\right) e^{-M_{a d}^{S} / 2}, 2 \leq a \leq 4
$$

$$
N_{j, y, 5^{+}}^{S, p r e d}=\left(N_{j, y-1,4}^{S, p r e d} e^{-M_{a d}^{S} / 2}-C_{j, y, 4}^{S, \text { pred }}\right) e^{-M_{a d}^{S} / 2}\left(N_{j, y-1,5^{+}}^{S, \text { pred }} e^{-M_{a d}^{S} / 2}-C_{j, y, 5^{+}}^{S, p r e d}\right) e^{-M_{a d}^{S} / 2}
$$

$$
B_{j, y}^{S, \text { pred }}=\sum_{a=0}^{5+} N_{j, y, a}^{S, p r e d} \bar{w}_{j, a}^{S}
$$

$$
\begin{equation*}
S S B_{j, y}^{S, p r e d}=\sum_{a=1}^{5+} f_{j, a}^{S} N_{j, y, a}^{S, \text { pred }} \bar{w}_{j, a}^{S} \tag{A.1}
\end{equation*}
$$

Anchovy: $\quad N_{j, y, 1}^{A, p r e d}=\left(N_{j, y-1,0}^{A, p r e d} e^{-8 M_{j u}^{A} / 12}-C_{j, y, 0}^{A, p r e d}\right) e^{-4 M_{j u}^{A} / 12}$

$$
N_{j, y, 2}^{A, \text { pred }}=\left(N_{j, y-1,1}^{A, p r e d} e^{-5 M_{a d}^{A} / 12}-C_{j, y, 1}^{A, p r e d}\right) e^{-7 M_{a d}^{A} / 12}
$$

$$
N_{j, y, 3}^{A, p r e d}=N_{j, y-1,2}^{A, p r e d} e^{-M_{a d}^{A}}
$$

$$
N_{j, y, 4^{+}}^{A, \text { pred }}=N_{j, y-1,3}^{A, p r e d} e^{-M_{a d}^{A}}+N_{j, y-1,4^{+}}^{A, \text { pred }} e^{-M_{a d}^{A}}
$$

$$
B_{j, y}^{A, p r e d}=\sum_{a=0}^{4+} N_{j, y, a}^{A, \text { pred }} \bar{w}_{j, a}^{A}
$$

$$
\begin{equation*}
\operatorname{SSB}_{j, y}^{A, p r e d}=\sum_{a=1}^{4+} f_{j, a}^{A} N_{j, y, a}^{A, p r e d} \bar{w}_{j, a}^{A} \tag{A.2}
\end{equation*}
$$

[^1]In the two component OM of sardine, movement of west component $(j=1)$ sardine to the south component $(j=2)$ at the beginning of November, is modelled in one of two ways:

MoveR: Age-1 movement, move $_{y, 1}$, for $y_{1} \leq y \leq y_{n}$ is drawn randomly from move $y_{y, 1}$ for $2006 \leq y \leq 2015$.
MoveB: Age-1 movement is a function of the ratio of south to west component November biomass in the previous year (de Moor et al. 2016), i.e.

$$
\begin{equation*}
\operatorname{move}_{y, 1}^{*}=0.4992\left(1-\exp \left\{-1.3128 \frac{\frac{B_{2, y-1}^{S, p r e d}}{B_{1, y-1}^{S, p r e d}}}{B_{1}}\right\}\right) \tag{A.3a}
\end{equation*}
$$

In order to allow error about this relationship and satisfy $0 \leq$ move $_{y, 1} \leq 1$, the logit scale is used. Thus:
move $_{y, 1}=\frac{\exp \left\{\ln \left(\frac{\text { movever }_{y, 1}^{*}}{1-\text { move }_{y, 1}^{*}}\right)+\xi_{y}\right\}}{1+\exp \left\{\ln \left(\frac{\text { ove }_{y}^{*}}{1-\text { oove }} y_{y, 1}^{*}\right)+\xi_{y}\right\}}$, where $\xi_{y} \sim N\left(0,1.208^{2}\right)$,
with the standard deviation obtained from the model of de Moor and Butterworth (2016), corrected for bias.
Then the proportion of age $2+$ sardine moving is given by move $_{y, 2}=\phi \times$ move $_{y, 1}$, and
$N_{1, y, a}^{S, p r e d}=\left(1-\right.$ move $\left._{y, a}\right) N_{1, y, a}^{S^{*}}$
$N_{2, y, a}^{S, \text { pred }}=N_{2, y, a}^{S^{*}}+$ move $_{y, a} N_{1, y, a}^{S^{*}} \quad y_{1} \leq y \leq y_{n}$
where $N_{j, y, a}^{S^{*}}$ is simply the numbers-at-age a given by equation (A.1) prior to movement.

Letting $f\left(S S B_{j, y}^{i, p r e d}\right)$ denote the stock recruitment curve of the chosen model, with parameters a_{j}^{i} and b_{j}^{i}, then future recruitment $N_{j, y, 0}^{i, p r e d}$ is assumed to be log-normally distributed about a stock recruitment relationship as follows:
$N_{j, y, 0}^{i, p r e d}=f\left(S S B_{j, y}^{i, p r e d}\right) e^{\varepsilon_{j, y}^{i} \sigma_{j, r}^{i}-0.5\left(\sigma_{j, r}^{i}\right)^{2}}$
where
$\varepsilon_{j, y}^{i}=s_{j, c o r}^{i} \varepsilon_{j, y-1}^{i}+\omega_{j, y}^{i} \sqrt{1-\left(s_{j, c o r}^{i}\right)^{2}}$, where $\omega_{j, y}^{i} \sim N(0,1)$
In the two component OM of sardine, a proportion p of the south component spawner biomass is added to the west component spawner biomass to form "effective" west component spawner biomass used in equation (A.5) above. The "effective" south component spawner biomass used in equation (A.5) is thus $1-p$ of the original south component spawner biomass.

Implementation model

The candidate MPs outputs the following TAC/Bs:

1) An annual directed $>14 \mathrm{~cm}$ sardine TAC, $T A C_{y}^{S}$, which may be split by area $\left(T A C_{y}^{S, w}\right.$ and $\left.T A C_{y}^{S, S}\right)$ in a candidate MP which allocates sardine TAC west and south of Cape Agulhas. In years of low biomass, a precautionary initial TAC may be given followed by a final TAC after the recruit survey.
2) An initial and final anchovy TAC ($T A C_{y}^{1, A}$ and $T A C_{y}^{2, A}$).
3) An annual time-invariant anchovy TAB for sardine only right holders, $T A B^{A}$.
4) An annual time-invariant $>14 \mathrm{~cm}$ sardine TAB with directed round herring and anchovy fishing, $T A B_{b i g}^{S}$.
5) An annual time-invariant $\leq 14 \mathrm{~cm}$ sardine bycatch with round herring, and to a lesser extent with anchovy, $T A B_{\text {small,rh }}^{S}$.
6) For each sardine TAC in 1) there is a corresponding $\leq 14 \mathrm{~cm}$ sardine TAB with directed ($>14 \mathrm{~cm}$) sardine, $T A B_{y, \text { small }}^{S}$, which may be split by area ($T A B_{y, \text { small }}^{S, w}$ and $\left.T A B_{y, \text { small }}^{S, S}\right)$ in a candidate MP which allocates sardine TAC west and south of Cape Agulhas.
7) For each anchovy TAC in 2) there is a corresponding $\leq 14 \mathrm{~cm}$ sardine TAB with anchovy, $T A B_{y, a n c h}^{1, S}$ and $T A B_{y, a n c h}^{2, S}$.
Given these TAC / TABs output from the MP (in thousands of tons), the implementation model simulates the implementation of these catch limits by the industry to yield future catches-at-age (in billions).

There are four alternative possible combinations of sardine TAC/B by area / component:
i) A single area sardine $T A C / B$ and a single sardine stock.
ii) A two-area sardine TAC/B and a single sardine stock.
iii) A single area sardine $T A C / B$ and two sardine components.
iv) A two-area sardine TAC/B and two sardine components.

Defining $T A C_{j, y}^{S}$ to be the directed $>14 \mathrm{~cm}$ sardine TAC assumed taken from component j, the following separation of TAC by component is effected:
i) $\quad T A C_{1, y}^{S}=T A C_{y}^{S}$ and $T A B_{1, y, \text { small }}^{S}=T A B_{y, \text { small }}^{S}$, with only a single sardine stock
ii) $\quad T A C_{1, y}^{S}=T A C_{y}^{S, w}+T A C_{y}^{S, S}$ and $T A B_{1, y, \text { small }}^{S}=T A B_{y, \text { small }}^{S, w}+T A B_{y, \text { small }}^{S, S}$ with only a single sardine stock
iii) $\quad T A C_{1, y}^{S}=\tau T A C_{y}^{S}$ and $T A C_{2, y}^{S}=(1-\tau) T A C_{y}^{S}$, and $T A B_{1, y, s m a l l}^{S}=\tau T A B_{y, s m a l l}^{S}$ and $T A B_{2, y, \text { small }}^{S}=(1-\tau) T A B_{y, \text { small }}^{S}$
iv) $\quad T A C_{1, y}^{S}=T A C_{y}^{S, w}$ and $T A C_{2, y}^{S}=T A C_{y}^{S, s}$, and $T A B_{1, y, \text { small }}^{S}=T A B_{y, s m a l l}^{S, w}$ and $T A B_{2, y, \text { small }}^{S}=$ $T A B_{y, \text { small }}^{S,}$.

The annual proportion of sardine catch taken west of Cape Agulhas was found to have a relationship with the ratio of the TAC in a particular year to the west component total biomass in November of the previous year (de Moor et al. 2016). Thus we have
$\tau=0.9376\left(1-\exp \left\{-0.4647 T A C_{y}^{S} / B_{1, y-1}^{S}\right\}\right)$.
In order to allow error about this relationship and satisfy $0 \leq \tau \leq 1$, the logit scale is used. Thus:
$\tau=\frac{\exp \left\{\ln \left(\frac{\tau^{*}}{1-\tau^{*}}\right)+\xi_{y}\right\}}{1+\exp \left\{\ln \left(\frac{\tau^{*}}{1-\tau^{*}}\right)+\xi_{y}\right\}}$, where $\xi_{y} \sim N\left(0,0.976^{2}\right)$,
with the standard deviation obtained from the model of de Moor et al. (2016), corrected for bias.

Sardine adult catch

The adult sardine catch is simulated using selectivity-at-age estimated by the OM:
$C_{j, y, a}^{S, p r e d}=N_{j, y-1, a}^{S, p r e d} e^{-M_{a d}^{S} / 2} S_{j, a}^{S} F_{j, y}, 1 \leq a \leq 5^{+}$
where $F_{j, y}=\frac{T A C_{j, y}^{S}+\hat{\epsilon}_{j} T A B_{b i g}^{S \text { draw }}}{N_{j, y-1,0}^{S, p r e d} e^{-M_{j u}^{S} / 2} S_{j, 0}^{S} \bar{o}_{j, 0 c}^{S}+\sum_{a=1}^{5+} N_{j, y-1, a}^{S, p r e d} e^{-M_{a d}^{S} / 2} S_{j, a}^{S} \bar{w}_{j, a c}^{S}}$,

Anchovy 1-year-old catch

Between 2006 and 2015, the total (annual) 1^{+}-year-old catch in tons constituted, on average, $38 \%^{2}$ of the anchovy catch biomass between January and June (the period to which $T A C_{y}^{1, A}$ and half of $T A B^{A}$ is taken to apply). Almost all of this catch consisted of 1-year-olds (de Moor 2016b). The anchovy 1-year-old catch is thus taken to be:
$C_{1, y, 1}^{A, p r e d}=0.38 \times \frac{T A A_{y}^{1, A}+0.5 T A B^{A}}{\bar{w}_{1 c}^{A}}$.

Anchovy 0-year-old catch
Between 2006 and 2015 the anchovy juvenile catch in tons from $1^{\text {st }}$ January to $30^{\text {th }}$ April, together with half the May juvenile catch in tons was $29 \%{ }^{3}$ of the total anchovy catch biomass from January to June. Using the above assumption that $T A C_{y}^{1, A}$ and half of $T A B^{A}$ is caught by the end of June, the anchovy 0 -year-old catch taken prior to the recruit survey is:
$C_{1, y, o b s}^{A, p r e d}=0.29 \times \frac{T A C_{y}^{1, A}+0.5 T A B^{A}}{\bar{w}_{o c}^{A}}$.
and for the whole year:
$C_{1, y, O}^{A, p r e d}=\frac{1}{\bar{w}_{0 c}^{A}}\left(T A C_{y}^{2, A}+T A B^{A}-\bar{w}_{1 c}^{A} C_{1, y, 1}^{A, p r e d}\right)$

Sardine 0 -year-old catch prior to the recruit survey

The 0 -year-old sardine catch prior to the recruit survey is based on the January to mid-May bycatch occurring with i) round herring, ii) $>14 \mathrm{~cm}$ sardine in the directed fishery, and iii) targeted juvenile anchovy, in addition to some larger 0 -year-old sardine being landed as directed sardine. It is assumed that half the $\leq 14 \mathrm{~cm}$ sardine bycatch with round herring occurs before the recruit survey, and the other half after the recruit survey. It is

[^2]further assumed that 60% of the $\leq 14 \mathrm{~cm}$ sardine in the directed sardine catch is caught by the time of the survey. It is assumed that all 0 -year-old sardine landed in the directed $>14 \mathrm{~cm}$ fishery occur after the recruit survey:

Sardine 0-year-old catch (in billions)

In modelling the total sardine juvenile bycatch, the following approach is used. If the full TAB with anchovy were caught, the total juvenile sardine catch by mass would be
$C_{1, y, 0}^{S, p r e d}=\frac{1}{\bar{w}_{1,0 c}^{S}}\left(\left(\lambda_{y} T A C_{y}^{1, A}+r_{y}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right)\right)+\dot{\tau}_{1} T A B_{\text {small,rh }}^{S}+\omega_{1, y}^{\text {draw }} T A C_{1, y}^{S}\right)+$
$N_{1, y-1,0}^{S, p r e d} e^{-M_{j u}^{S} / 2} S_{1,0}^{S} F_{1, y}$
$C_{2, y, 0}^{S, p r e d}=\frac{1}{\bar{w}_{2,0 c}^{S}}\left(\dot{\tau}_{2} T A B_{\text {small,rh }}^{S}+\omega_{2, y}^{\text {draw }} T A C_{2, y}^{S}\right)+N_{2, y-1,0}^{S, \text { pred }} e^{-M_{j u}^{S} / 2} S_{2,0}^{S} F_{2, y}$
where
$\lambda_{y}=\max \left\{\gamma_{y}, r_{y}\right\}$,
$r_{y}=\frac{1}{2}\left(r_{y, \text { sur }}+r_{y, \text { com }}\right)$, and
$r_{y, \text { sur }}=\frac{N_{1, y, r}^{S . o b s}}{N_{1, y, r}^{A, o s s}}$.

During simulation ${ }^{5}$, the sardine bycatch to anchovy ratio in commercial catches in May, is given by:
$r_{y, \text { com }}=k_{\text {may }} \frac{N_{1, y}^{s, r}{ }^{\text {Spred }}}{N_{1, y, r}^{A, p r e d}} e^{\sigma_{\text {may }} \varepsilon_{y, \text { may }}}$.
where $\varepsilon_{y, \text { may }}=\rho_{\text {may }} \eta_{y, \text { janmay }}+\sqrt{1-\left(\rho_{\text {may }}\right)^{2}} \eta_{y, \text { may }}$,
with $\eta_{y, \text { may }} \sim N(0,1)$ and $\eta_{y, \text { jan:may }}$ is given by equation (A.14). As $r_{y, c o m}$ is based on simulated commercial catches, the model predicted numbers-at-age, $N_{1, y, r}^{i, p r e d}$, are used rather than those simulated to be survey observations.

Equation (A.15) assumes that the ratio of juvenile sardine to anchovy "in the sea" during May, r_{y}, will remain a constant for the remainder of the year season. However, there is usually a drop-off in this ratio as the year progresses (Figure A3). This effect is simulated by adjusting equation (A.15) to reflect the actual level of 0 -year-old sardine to be expected in the catches with anchovy, given the historical pattern of sardine bycatch to anchovy ratio from May to October-December.

[^3]Over the past 10 years (2006-2015), the sardine bycatch with anchovy from January to $31^{\text {st }}$ May has been 1.327 times that from January to mid-May ${ }^{6}$. Adjusting the sardine bycatch prior to the survey to take account of this additional bycatch by the end of May, the catch from the west component or single stock in equation (A.15) is modified as follows:
$C_{1, y, 0}^{S *, p r e d}=\frac{1}{\bar{w}_{1,0 c}^{S}}\left(\dot{\tau}_{1} T A B_{\text {small,rh }}^{S}+\omega_{1, y}^{\text {draw }} T A C_{1, y}^{S}\right)+N_{1, y-1,0}^{S, p r e d} e^{-M_{j u}^{S} / 2} S_{1,0}^{S} F_{1, y}+1.327 \times\left(C_{1, y, 0 b s}^{S, \text { pred }}-\right.$
$\left.0.5 \frac{\hat{\tau}_{1} T A B_{\text {small,rh }}^{S}}{\bar{w}_{1,0 c}^{S}}-0.6 \frac{\omega_{1, y}^{\text {draw }} T A C_{1, y}^{S}}{\bar{w}_{1,0 c}^{S}}\right)+\frac{1}{\bar{w}_{1, o c}^{S}}\left(r_{y, j u n} C_{y, j u n}^{A, p r e d}+r_{y, j u l} C_{y, j u l}^{A, \text { pred }}+r_{y, \text { aug }} C_{y, \text { aug }}^{A, \text { pred }}+r_{y, \text { sep }} C_{y, \text { sep }}^{A, \text { pred }}+\right.$ $\left.r_{y, o c t d e c} c_{y, o c t d e c}^{A, p r e d}\right)$

The sardine bycatch to anchovy ratios, $r_{y, m}$, are simulated in a similar way to $r_{y, \text { com }}$ (equation A.19) as follows:
$r_{y, m}=k_{m} \frac{N_{1, y, r}^{s, p r e d}}{N_{1, y, r}^{A, p r e}} e^{\sigma_{m} \varepsilon_{y, m}}, \quad{ }^{7}$ where $m=j u n, j u l$, aug, sep,octdec
And correlation between adjacent months is simulated as follows:

$$
\begin{aligned}
& \varepsilon_{y, j u n}=\rho_{j u n} \varepsilon_{y, \text { may }}+\sqrt{1-\left(\rho_{j u n}\right)^{2}} \eta_{y, j u n} \\
& \varepsilon_{y, j u l}=\rho_{j u l} \varepsilon_{y, j u n}+\sqrt{1-\left(\rho_{j u l}\right)^{2}} \eta_{y, j u l} \\
& \varepsilon_{y, \text { aug }}=\rho_{a u g} \varepsilon_{y, j u l}+\sqrt{1-\left(\rho_{a u g}\right)^{2}} \eta_{y, \text { aug }} \\
& \varepsilon_{y, \text { sep }}=\rho_{\text {sep }} \varepsilon_{y, a u g}+\sqrt{1-\left(\rho_{\text {sep }}\right)^{2}} \eta_{y, \text { sep }}
\end{aligned}
$$

$$
\begin{equation*}
\varepsilon_{y, \text { octdec }}=\rho_{o c t d e c} \varepsilon_{y, \text { sep }}+\sqrt{1-\left(\rho_{\text {octdec }}\right)^{2}} \eta_{y, o c t d e c} . \tag{A.23}
\end{equation*}
$$

where $\varepsilon_{y, \text { may }}$ is from equation (A.20), and $\eta_{y, m} \sim N(0,1), m=j u n, j u l$, aug, sep, octdec.

Between 2006 and 2015 the average total anchovy catch from January to May was 76% of that from January to June. Assuming 76% of $T A C_{y}^{1, A}$ is caught by the end of May, and given the assumption that $T A C_{y}^{1, A}$ is caught by the end of June, the anchovy catches in equation (A.21), $C_{y, m}^{A, p r e d}$ ($m=j u n, j u l$, aug, sep, octdec), are derived as follows (in thousands of tons):

$$
\begin{align*}
& C_{y, j u n}^{A, p r e d}=0.24 \times T A C_{y}^{1, A} \tag{A.24}\\
& C_{y, j u l}^{A, p r e d}=p_{j u l}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right) \tag{A.25}
\end{align*}
$$

[^4]${ }^{8}$ Average from 1984 to 2015 is 72%.
$C_{y, \text { aug }}^{A, p r e d}=p_{\text {aug }}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right)$
$C_{y, \text { sep }}^{A, p r e d}=p_{\text {sep }}\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right)$
$C_{y, \text { octed }}^{A, \text { prec }}=\left(1-p_{j u l}-p_{\text {aug }}-p_{\text {sep }}\right)\left(T A C_{y}^{2, A}-T A C_{y}^{1, A}\right)$
where $p_{j u l}=0.42^{9}, p_{\text {aug }}=0.26 .^{10}$ and $p_{\text {sep }}=0.20{ }^{11}$ are taken to be the average 2006 to 2015 proportion of anchovy catch during July to December that is taken in July, August and September, respectively.

Closure of the anchovy fishery

The anchovy catch, $C_{1, y, 0}^{A, p r e d}$, is adjusted if the predicted proportion of $C_{1, y, 0}^{S^{*}, \text { pred }}$ which accounts for small sardine bycatch with anchovy exceeds $T A B_{y, a n c h}^{2, S}$, in order to reflect the closure of the anchovy fishery once the sardine bycatch allowance with anchovy directed fishing is reached. If

$$
\begin{gathered}
1.327 \times\left(\bar{w}_{1,0 c}^{S} C_{1, y, 0 b s}^{S, p r e d}-0.5 \tau_{1} T A B_{s m a l l, r h}^{S}-0.6 \omega_{1, y}^{\text {draw }} T A C_{1, y}^{S}\right)+\left(r_{y, j u n} C_{y, j u n}^{A, p r e d}+r_{y, j u l} C_{y, j u l}^{A, p r e d}+r_{y, a u g} C_{y, \text { aug }}^{A, p r e d}+r_{y, \text { sep }} C_{y, \text { sep }}^{A, p r e d}+r_{y, \text { octdec }} C_{y, o c t d e c}^{A, p r e d}\right) \\
>T A B_{y, \text { anch }}^{2, S}
\end{gathered}
$$

then the anchovy fishery would be closed once the full bycatch allowance was taken. This is simulated by assuming that the anchovy TAC is taken at the same rate as the sardine bycatch:

$$
\begin{gather*}
C_{1, y, 0}^{S^{* *}, \text {,red }}= \\
\min \left\{C_{1, y, 0}^{S^{*}, p r e d} ; \min \left\{0 ; \frac{T A B_{y,, \text { anch }}^{2, S}}{\bar{w}_{1,0 c}^{S}}+\frac{1}{\bar{w}_{1,0 c}^{S}}\left(\dot{\tau}_{1} T A B_{s m a l l, r h}^{S}+\omega_{1, y}^{\text {draw }} T A C_{1, y}^{S}\right)+N_{1, y-1,0}^{S, p r e d} e^{-M_{j u}^{S} / 2} S_{1,0}^{S} F_{1, y}\right\}\right\} \tag{A.29}
\end{gather*}
$$

$C_{1, y, 0}^{A^{*}, \text { pred }}=\min \left\{C_{1, y, 0}^{A, p r e d} ; \min \left\{0 ; \frac{1}{\bar{w}_{1,0 c}^{A}}\left(T A B^{A}-\bar{w}_{1 c}^{A} C_{1, y, 1}^{A, \text { pred }}+\right.\right.\right.$

General

For all catches simulated in the OM, an upper limit is placed on the industry's efficiency by assuming that no more than 95% of the selectivity-weighted abundance may be caught at the time of the pulse.

Observation Model

The survey estimates for total biomass and recruitment are generated by the as follows ($i=A, S$):
$B_{j, y}^{i, o b s}=k_{j, N}^{i} B_{j, y}^{i, p r e d} e^{\varepsilon_{j, j, N o v}^{i}}$
where $\varepsilon_{j, y, N o v}^{S}=\eta_{j, y, N o v}^{S} \tilde{\sigma}_{j, y, N o v}^{S}$,

$$
\begin{equation*}
\text { where } \eta_{j, y, N o v}^{S} \sim N(0,1) \tag{A.31}
\end{equation*}
$$

[^5]and $\varepsilon_{1, y, N o v}^{A}=\left(\rho_{N o v} \eta_{1, y, N o v}^{S}+\sqrt{1-\rho_{N o v}^{2}} \eta_{1, y, N o v}^{A}\right) \tilde{\sigma}_{j, y, N o v}^{A}{ }^{12}, \quad$ where $\eta_{1, y, N o v}^{A} \sim N(0,1)$
Single stock: $\quad \tilde{\sigma}_{1, y, \text { Nov }}^{S}=\sqrt{\min \left(1.1181^{2} ; 0.0486+\frac{81.0356}{B_{1, y}^{S, p r e d}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{N}^{S}\right)^{2.13}}$
West component: $\quad \tilde{\sigma}_{1, y, N o v}^{S}=\sqrt{\min \left(1.1267^{2} ; 0.1496+\frac{29.4655}{B_{1, y}^{S, p r e d}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{N}^{S}\right)^{2.14}}$
South component: $\quad \tilde{\sigma}_{2, y, N o v}^{S}=\sqrt{\min \left(1.2293^{2} ; 0.3749+\frac{0.1109}{B_{2, y}^{S, p r e d}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{N}^{S}\right)^{212}}$
and
\[

$$
\begin{equation*}
\tilde{\sigma}_{1, y, \text { Nov }}^{A}=\sqrt{\min \left(0.4096^{2} ; 0.0215+\frac{22.2412}{B_{1, y}^{A, p r e d}}\right)+\left(\lambda_{N}^{A}\right)^{2.15}} \tag{A.34}
\end{equation*}
$$

\]

obtained from a regression of the observed CV against the base case OM predicted biomass between 1984 and 2015 at the joint posterior mode (Figure A4).
$N_{j, y, r}^{i, o b s}=k_{j, r}^{i} N_{j, y, r}^{i, p r e d} e^{\varepsilon_{j, j, r e c}^{i}}$,
where $\varepsilon_{j, y, r e c}^{S}=\eta_{j, y, \text { rec }}^{S} \tilde{\sigma}_{j, y, r e c}^{S}$,
where $\eta_{j, y, \text { rec }}^{S} \sim N(0,1)$
and $\quad \varepsilon_{1, y, r e c}^{A}=\left(\rho_{r e c} \eta_{1, y, \text { rec }}^{S}+\sqrt{1-\rho_{r e c}^{2}} \eta_{1, y, \text { rec }}^{A}\right) \tilde{\sigma}_{j, y, \text { rec }}{ }^{13}, \quad$ where $\eta_{1, y, r e c}^{A} \sim N(0,1)$.
Single stock

$$
\begin{equation*}
\tilde{\sigma}_{1, y, r e c}^{S}=\sqrt{\min \left(1.0785^{2} ; 0.1056+\frac{1.1859}{N_{1, y, r}^{S, p r e}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{S}\right)^{211}} \tag{A.38}
\end{equation*}
$$

West component: $\quad \tilde{\sigma}_{1, y, r e c}^{S}=\sqrt{\min \left(1.0785^{2} ; 0.0209+\frac{2.2298}{N_{1, y, r}^{S, p r e d}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{s}\right)^{212}}$
South component: $\quad \tilde{\sigma}_{2, y, r e c}^{S}=\sqrt{\min \left(1.0184^{2} ; 0.4690+\frac{0.0334}{N_{2, y, r}, \underline{, s e c}}\right)+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{s}\right)^{212}}$
and

$$
\begin{equation*}
\tilde{\sigma}_{1, y, r e c}^{A}=\sqrt{\min \left(0.3404^{2} ; 0.0366+\frac{0.9598}{N_{1, y, r}^{A, p r e d}}\right)+\left(\lambda_{r}^{A}\right)^{213}} \tag{A.40}
\end{equation*}
$$

obtained from a regression of the observed CV against the base case OM predicted recruitment between 1985 and 2015 at the joint posterior mode (Figure A4).

[^6]Assuming that the recruit survey begins mid-May each year, and that juvenile sardine are caught half-way between 1 November and the start of the survey, while juvenile anchovy caught prior to the survey are taken in a pulse at 1 May, we simulate:
$N_{j, y, r}^{S, p r e d}=\left(N_{j, y-1,0}^{S, p r e d} e^{-3.25 M_{j u}^{S} / 12}-C_{j, y, 0 b s}^{S, p r e d}\right) e^{-3.25 M_{j u}^{S} / 12}$
$N_{j, y, r}^{A, p r e d}=\left(N_{j, y-1,0}^{A, p r e d} e^{-0.5 M_{j u}^{A}}-C_{j, y, 0 b s}^{A, p r e d}\right) e^{-0.5 M_{j u}^{A} / 12}$

Assumptions made for 2016 and 2017

As the stock assessments (de Moor 2016a, de Moor and Butterworth 2016a,b) covered the period to November 2015, the MP testing framework begins from November 2015 and projects to November 2036. A number of parameters that would be simulated in the testing framework for 2016 and 2017, have however already been observed. Thus the following changes are made to the simulation framework above for 2016 and 2017:
i) The TAC/TABs (in thousands of tons) for 2016 and 2017 have already been set using OMP-14, thus $T A C_{2016, \text { init }}^{S}=64.563, T A B_{2016, \text { small,init }}^{S}=4.519, T A C_{2016}^{S}=64.928, T A B_{2016, \text { small }}^{S}=$ $5.545, T A C_{2016}^{1, A}=254.483, T A B_{2016, \text { anch }}^{1, S}=25.866, T A C_{2016}^{2, A}=261.54916, T A B_{2016, \text { anch }}^{2, S}=$ 31.463 and $T A C_{2017, \text { init }}^{S}=23.964, \quad T A B_{2017, \text { small,init }}^{S}=1.677, \quad T A C_{2017}^{S}=27.7577^{17}$, $T A B_{2017, \text { small }}^{S}=3.189, T A C_{2017}^{1, A}=217.303^{18}, T A B_{2017, \text { anch }}^{1, S}=25.064, T A C_{2017}^{2, A}=217.303^{18}$, $T A B_{2017, \text { anch }}^{2, S}=29.969$. The small sardine TABs with directed sardine are overwritten in equations (A.15) and (A.21) ${ }^{19}$ with the observed bycatch, with all the bycatch assumed taken west of Cape Agulhas: $C_{2016, \text { small }}^{S, \text { west }}=0.061, C_{2016, \text { small }}^{S, \text { south }}=0 t, C_{2017, \text { small }}^{S, \text { west }}=0.130$ and $C_{2017, \text { small }}^{S, \text { south }}=$ 0 thousand t. The small sardine TABs with anchovy are also overwritten in equation (A.21) ${ }^{19}$ with the observed bycatch: $C_{2016, \text { small,anch }}^{S}=11.629 C_{2017, \text { small,anch }}^{S}=4.0266^{20}$ thousand t . For two area candidate MPs, and single area candidate MPs simulation tested on two components, the proportion of the directed sardine TAC taken west:east of Cape Agulhas is $0.641: 0.359^{21}$ and 0.870:0.130 ${ }^{21}$ for 2016 and 2017, based on the proportions observed in the catches during 2016 and 2017.
ii) As the May 2016 and 2017 survey observations are available, no error is required, thus equation (A.36) is replaced by

[^7]$-N_{j=1,2016, r}^{o b s, S}=0.811$ billion (CV of 0.425) for either the single stock OM or the west component of the two component OM, $N_{j=2,2016, r}^{o b s, S}=0.850$ billion (CV of 0.887) for the south component of the two component OM, and $N_{j=1,2016, r}^{o b s, A}=118.075$ billion (CV of 0.221) (Coetzee et al. 2016a and D. Merkle pers comm.).
$-N_{j=1,2017, r}^{o b s, S}=7.156$ billion (CV of 0.536) for either the single stock OM or the west component of the two component $\mathrm{OM}, N_{j=2,2017, r}^{\text {obs, }}=1.621$ billion $(\mathrm{CV}$ of 0.566$)$ for the south component of the two component OM, and $N_{j=1,2017, r}^{o b s, A}=830.201$ billion (CV of 0.138) (Coetzee et al. 2017 and D. Merkle pers comm.).
iii) The ratio of juvenile sardine to anchovy "in the sea" used in equation (A.17) is
$-r_{2016}=0.5 \times(0.0231+0.089)($ de Moor 2016a) .
$-r_{2017}=0.5 \times(0.009+0.039)($ de Moor 2017).
iv) The model predicted recruitment in November 2015 and 2016 is an inverse variance weighted average of the logarithms of two estimates (logarithms are taken as the distributions of the estimates themselves are assumed to be log-normal). The first estimate comes from the recruitment observed in the $\mathrm{y}=2016$ and $\mathrm{y}=2017$ recruit surveys:
$N_{j, y, r}^{i, p r e d}=\frac{1}{k_{j, r}^{i}} N_{j, y, r}^{i, o b s}$ (the best estimate from equation (A.36) for component j of species i)
$\widetilde{N}_{1, y-1,0}^{S, p r e d}=\left(N_{1, y, r}^{S, p r e d} e^{0.5\left(6+t_{y}\right) M_{j u}^{S} / 12}+\dot{C}_{1, y, 0 b s}^{S}\right) e^{0.5\left(6+t_{y}\right) M_{j u}^{S} / 12} \quad$ (equations A. 41 and A.7)
$\widetilde{N}_{2, y-1,0}^{S, p r e d}=\left(N_{2, y, r}^{S, p r e d} e^{0.5\left(6+t_{y}\right) M_{j u}^{S} / 12}+\dot{C}_{2, y, 0 b s}^{S}\right) e^{0.5\left(6+t_{y}\right) M_{j u}^{S} / 12}$
(equations A. 41 and A.7)
$\widetilde{N}_{j, y-1,0}^{A, p r e d}=\left(N_{j, y, r}^{A, p r e d} e^{t_{y} M_{j u}^{A} / 12}+\dot{C}_{j, y, 0 b s}^{A}\right) e^{0.5 M_{j u}^{A}}$
(equation (A.41))

- where $\dot{C}_{2016, O b s}^{A}=20.777$ billion, and $\dot{C}_{j=1,2016, O b s}^{S}=0.673$, and $\dot{C}_{j=2,2016, \text { obs }}^{S}=0.00$ billion being the juvenile anchovy and sardine catch, respectively from 1 November 2015 to the day before the recruit survey in June 2016, which was $7^{\text {th }}$ June, i.e. $t_{2016}=1.233$ (de Moor 2016a).
- where $\dot{C}_{2017, O b s}^{A}=17.496$ billion, and $\dot{C}_{j=1,2017, O b s}^{S}=0.303$, and $\dot{C}_{j=2,2017, O b s}^{S}=0.00^{22}$ billion
being the juvenile anchovy and sardine catch, respectively from 1 November 2016 to the day before the recruit survey in June 2017, which was $11^{\text {th }}$ June, i.e. $t_{2017}=1.367$ (de Moor 2017). The standard errors associated with the logarithms of these estimates are:

$$
\begin{aligned}
& \tilde{\sigma}_{1,2016, \text { rec }}^{S}=\sqrt{0.425^{2}+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{S}\right)^{2}} \\
& \tilde{\sigma}_{2,2016, \text { rec }}^{S}=\sqrt{0.887^{2}+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{S}\right)^{2}} \\
& \tilde{\sigma}_{1,2016, \text { rec }}^{A}=\sqrt{0.221^{2}+\left(\lambda_{r}^{A}\right)^{2}}
\end{aligned}
$$

$$
\tilde{\sigma}_{1,2017, \text { rec }}^{S}=\sqrt{0.536^{2}+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{S}\right)^{2}}
$$

$$
\tilde{\sigma}_{2,2017, \text { rec }}^{S}=\sqrt{0.566^{2}+\left(\varphi_{a c}^{S}\right)^{2}+\left(\lambda_{r}^{S}\right)^{2}}
$$

$$
\tilde{\sigma}_{1,2017, \text { rec }}^{A}=\sqrt{0.138^{2}+\left(\lambda_{r}^{A}\right)^{2}}
$$

[^8]v) The second estimate comes from the stock recruitment curve, but needs to take account of the serial correlation in residuals about this curve, and so depends on the residual estimated about this curve for Novembers 2014 and 2015. Thus ${ }^{23}$:
$\widetilde{N}_{j, y, 0}^{i, p r e d}=f\left(S S B_{j, y}^{i, \text { pred }}\right) e^{s_{j, \text { cor }}^{i} \varepsilon_{j, y}^{i} \sigma_{j, r}^{i}}$
$$
\text { for } y=2015 \text { and } y=2016
$$
with a standard error of the logarithm of this estimate being given by:
$$
\check{\sigma}_{j, y}^{i}=\sqrt{1-\left(s_{j, c o r}^{i}\right)^{2}} \sigma_{j, r}^{i}
$$
vi) The inverse variance weighted average of the logarithms of these two estimates is then given by:
$$
\text { for } y=2016 \text { and } y=2017
$$

This process is essentially shrinking the estimate provided by the survey towards the mean provided by the stock recruitment relationship (adjusted for serial correlation).
vii) The recruitment residual in November 2015 and 2016, required in the calculation of the recruitment residual in November 2016 (part v) above) and November 2017 (equation A.6), is obtained from equation (A.5) as follows:
$\varepsilon_{j, y}^{i}=\ln \left(\frac{N_{j, y, 0}^{i \text { pred }}}{f\left(S S B_{j, y}^{i p r e d}\right)}\right) / \sigma_{j, r}^{i}$

$$
\text { for } y=2015 \text { and } y=2016
$$

viii) As the November 2016 survey observations are available, no error is required, thus equation (A.31) is replaced by $B_{j=1,2016}^{A, o b s}=1733.040$ thousand tons, $B_{j=1,2016}^{S, o b s}=258.5746$ thousand tons for single area HCRs, and $B_{j=1,2016}^{S, o b s}=183.3558$ and $B_{j=2,2016}^{S, o b s}=75.2188$ thousand tons for two area HCRs (Coetzee et al. 2016b).

External inputs into the MP testing framework

Some of the parameters required in the observation model were sampled from the posterior distributions of the underlying OMs (de Moor 2017c,d). In addition, historical catches were used in the calculation of single stock or west component sardine bycatch to anchovy ratios used in the implementation model. These parameters are detailed in this section.

Correlation in survey residuals

The single stock or west component sardine and anchovy November survey residuals are given by ($i=S, A$):

$$
\begin{equation*}
\varepsilon_{y, N o v}^{i}=\ln \left(B_{1, y}^{i, o b s}\right)-\ln \left(k_{1, N}^{i} \widehat{B}_{1, y}^{i}\right), \quad 1984 \leq y \leq 2015 \tag{A.42}
\end{equation*}
$$

The standard deviations of the residuals are given by:

[^9]$\sigma_{\text {Nov }}^{i}=\sqrt{\frac{\sum_{y=1994}^{2015}\left(\varepsilon_{y, N o v}^{i}\right)^{2}}{\sum_{y=1984}^{2015}}}$,
and
$\rho_{N o v}=\frac{\sum_{y=1984}^{2015} \varepsilon_{y, N o v}^{S} \varepsilon_{y, N o v}^{A}}{\left(\sum_{y=1984}^{2011} 1\right) \sigma_{\text {Nov }}^{S} \sigma_{\text {Nov }}^{A}}$.

Similarly, the single stock or west component sardine and anchovy May recruit survey residuals are given by ($i=S, A$):
$\varepsilon_{y, r e c}^{i}=\ln \left(N_{1, y, r}^{i, o b s}\right)-\ln \left(k_{1, r}^{i} \widehat{N}_{1, y, r}^{i}\right), \quad 1985 \leq y \leq 2015$

The standard deviations of the residuals are given by:
$\sigma_{\text {rec }}^{i}=\sqrt{\frac{\sum_{y=1985\left(\varepsilon_{y, r e c}\right)^{2}}^{2015}}{\sum_{y=1985}^{2015}}} \quad 24$.
The correlation in the residuals between the single stock or west component sardine and anchovy recruit survey estimates is:
$\rho_{\text {rec }}=\frac{\sum_{y=1955}^{2015} \varepsilon_{y, \text { rec }}^{S} \varepsilon_{y, r e c}^{A}}{\left(\sum_{y=1955}^{2015} 1\right) \sigma_{\text {rec }}^{S} \sigma_{\text {rec }}^{A}} \quad 15$.

Ratio of sardine bycatch to anchovy between January and May

The ratio of sardine bycatch to anchovy in the commercial catches from January to May is needed to simulate the 0 -year-old single stock or west component sardine caught prior to the recruit survey (equation (A.11)). The relationship between the historical sardine bycatch to anchovy ratio in the catches from January to May, together with the OM prediction for the ratio of single stock or west component sardine to anchovy November recruitment, is used to provide this ratio. Only the most recent 10 years data is used in the below equations as future catches are assumed to more closely simulate those over the past decade, rather than earlier periods when fishing patterns may have differed. The constant of proportionality estimated and the associated time series of residuals are as follows:
$k_{\text {janmay }}=\exp \left\{\frac{\sum_{y=2006}^{2015} \ln \left(C_{y, j a n m a y}^{S, b c} / c_{, j \text { janmay }}^{A}\right)-\ln \left(\widehat{N}_{1, y-1,0}^{S} / \widehat{N}_{1, y-1,0}^{A}\right)}{\sum_{y=2006}^{201}}\right\}$
and
$\varepsilon_{y, j a n m a y}^{\prime}=\ln \left(C_{y, j a n m a y}^{S, \text { byc }} / C_{y, j a n m a y}^{A}\right)-\ln \left(k_{\text {janmay }} \widehat{N}_{1, y-1,0}^{S} / \widehat{N}_{1, y-1,0}^{A}\right) \quad 2006 \leq y \leq 2015$ (A.49)
The standard deviation of the residuals is given by:
$\sigma_{\text {janmay }}=\sqrt{\sum_{y=2006}^{2015}\left(\varepsilon_{y, j a n m a y}^{\prime}\right)^{2} / \sum_{y=2006}^{2015} 1}$.

[^10]Ratio of sardine bycatch to anchovy in the commercial fishery during May
The estimated constant of proportionality and the associated time series of residuals for the juvenile single stock or west component sardine to anchovy ratio from the commercial catches during individual months May to September and October-December ($m=$ janmay, may, jun, jul, aug, sep,octdec) are as follows:
$k_{m}=\exp \left\{\frac{\sum_{y=2006}^{2015} \ln \left(C_{y, m}^{S, b y c} / /_{y, m}^{A}\right)-\ln \left(\tilde{N}_{1, y, r}^{S} / \mathcal{N}_{1, y, r}^{A}\right)}{\sum_{y=2006}^{001}}\right\} 25$
and
$\varepsilon_{y, m}^{\prime}=\ln \left(C_{y, m}^{S, b y c} / C_{y, m}^{A}\right)-\ln \left(k_{m} \widehat{N}_{1, y, r}^{S} / \widehat{N}_{1, y, r}^{A}\right), \quad 2006 \leq y \leq 2015$
The associated residual standard deviation is:
$\sigma_{m}=\sqrt{\sum_{y=2006}^{2015}\left(\varepsilon_{y, m}^{\prime}\right)^{2} / \sum_{y=2006}^{2015} 1}{ }^{16}$

A correlation coefficient between the residuals in successive months, is then calculated by:
$\rho_{m}=\frac{\sum_{y=2006}^{2015} \varepsilon_{y, m-1}^{\prime} \varepsilon_{y, m}^{\prime}}{\sigma_{m-1} \sigma_{m}\left(\sum_{y=2006}^{2015} 1\right)}$

[^11]Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation	Notes
$\overline{N_{j, y, a}^{i, p r e d}}$	OM predicted numbers at age a of species i, component j, at the beginning of November in year y	billions	A.1, A.2, (A.9,A.10)	$N_{j, 2015, a}^{i, p r e d}$ sampled from Bayesian posterior distributions of de Moor (2017c,d)
$M_{j u}^{i}$	Natural mortality rate of juvenile (age 0) fish of species i	year ${ }^{-1}$	A.1, A. 2	sampled from Bayesian posterior distributions of de Moor (2017c,d)
$M_{\text {ad }}^{i}$	Natural mortality rate of adult (age 1^{+}) fish of species i	year ${ }^{-1}$	A.1, A. 2	sampled from Bayesian posterior distributions of de Moor (2017c,d)
$C_{j, y, a}^{i, p r e d}$	OM predicted future catches at age a in year y of component j of species i	billions	A.9,(A.1, A.2)	
$C_{j, y, 0 b s}^{i, p r e d}$	OM predicted future catches at age 0 prior to the May recruit survey in year y of component j of species i	billions	A.12,A.14,(A.41)	
$B_{j, y}^{i, p r e d}$	OM predicted November total biomass in year y of component j of species i	Thousands of tons	A.1, A. 2	
$\hat{B}_{j, y}^{i}$	OM predicted November total biomass in year y of component j of species i	Thousands of tons	(A.42)	Sampled from Bayesian posterior distributions of de Moor (2017c,d)
$S S B_{j, y}^{i, p r e d}$	OM predicted November spawner biomass in year y of component j of species i	Thousands of tons	A.1, A. 2	
$\bar{w}_{j, a}^{i}$	Historical average November weights-at-age a of component j of species i	Grams		Weight is given by length in the OM, and thus: $w_{a}^{A}=\sum_{l} w_{l}^{A} A_{a, l}^{s u r}=\sum_{l} 0.0079 \times l^{3.0979} A_{a, l}^{\text {sur }}$
				$w_{j, a}^{S}=\frac{1}{5} \sum_{y=2011}^{2015} \sum_{l} w_{j, y, l}^{S} A_{j, y, a, l}^{s u r}$

[^12]Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation
$f_{j, a}^{i}$	Proportion of component j of species i that is mature at age a	(A.1, A.2)	Maturity is given by length in the OM, and thus:

Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation	Notes
$s_{j, c o r}^{i}$	Recruitment serial correlation for component j of species i		(A.6)	
$\omega_{j, y}^{i}$	Random variable	-	A. 6	$\omega_{j, y}^{i} \sim N(0,1)$
τ	The proportion of the directed $>14 \mathrm{~cm}$ sardine TAC assumed caught west of Cape Agulhas. The $\leq 14 \mathrm{~cm}$ sardine bycatch with directed $>14 \mathrm{~cm}$ sardine is assumed to be proportioned west/south of Cape Agulhas in the same manner as the TAC.	-	A. 8	
$S_{j, a}^{S}$	Commercial selectivity-at-age a of sardine component j	-	(A.9,A.10)	Sampled from Bayesian posterior distributions of de Moor (2017d). Selectivity is estimated by length in the OM, and thus: $\begin{aligned} & S_{j, a}^{S}=\frac{1}{5} \sum_{y=2011}^{2015} \sum_{l} 0.5\left(S_{j, y, 2, l}^{S} A_{j, y, 2, a, l}^{c o m}+\right. \\ & \left.S_{j, y, 3, l}^{S} A_{j, y, 3, a, l}^{c o m}\right)^{28}, 0 \leq a \leq 5^{+} \end{aligned}$
$F_{j, y}$	Commercial fishing mortality of sardine component j in year y	-	A. 10 (A.9)	
$\bar{w}_{j, a c}^{i}$	Historical average weights-at-age a in the catches from component j of species i	grams	(A.10)	Table A2
τ_{j}	Proportion of the $\leq 14 \mathrm{~cm}$ and $>14 \mathrm{~cm}$ sardine TAB with round herring ${ }^{29}$ assumed caught west of Cape Agulhas	-	(A.10,A.14,A.15)	$t_{1}=1$ and $\dot{\tau}_{2}=1$
$T A B_{b i g, y}^{S, d r a w}$	$>14 \mathrm{~cm}$ sardine bycatch with round herring and anchovy in year y			Randomly sampled from historical bycatches (Figure A1)
ω	Proportion of the directed $>14 \mathrm{~cm}$ sardine TAC used to set the $\leq 14 \mathrm{~cm}$ sardine TAB with directed sardine fishing	-		$\omega=0.07$; in the case of a two-area MP, $\omega_{\text {west }}=0.07$ and $\omega_{\text {south }}=0.02$

[^13]Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation	Notes
$\omega_{j, y}^{\text {draw }}$	Proportion of the directed $>14 \mathrm{~cm}$ sardine TAC simulated to be caught as $\leq 14 \mathrm{~cm}$ sardine bycatch from component j in year y	-	(A.14)	Randomly sampled from historical proportions (Figure A2)
γ_{y}	Percentage of the initial anchovy TAC used to set the initial $\leq 14 \mathrm{~cm}$ sardine TAB with anchovy	-	(A.16)	Equation given as part of Harvest Control Rules
r_{y}	Ratio of juvenile sardine to anchovy "in the sea" during May	-	A. 17 (A.16)	
$r_{y, s u r}$	Ratio of juvenile sardine to anchovy observed during the May recruit survey	-	A. 18 (A.17)	Observed data input to the Harvest Control Rule
$r_{y, \text { com }}$	Ratio of juvenile sardine to anchovy in May commercial catches	-	A. 19 (A.17)	Observed data input to the Harvest Control Rule; simulated during OMP testing as A. 19
$N_{j, y, r}^{i, o b s}$	Acoustic survey estimate of recruitment of component j of species i for May/June of year y	Billions	(A.18)	Observed data input to the Harvest Control Rule; simulated during OMP testing by equation A. 36
$N_{j, y, r}^{i, p r e d}$	OM predicted recruitment of component j of species i in November $y-$ 1, projected forward to the time of the recruit survey in May/June y	billions	A.41,(A.19)	
$\widehat{N}_{j, y, r}^{i}$	OM predicted recruitment of component j of species i in November $y-$ 1, projected forward to the time of the recruit survey in May/June y	Billions	(A.45)	Sampled from Bayesian posterior distributions of de Moor (2017c,d)
$k_{\text {janmay }}$	Estimated bias in residuals for juvenile sardine: anchovy from commercial catches between January and May	-	A.48,(A.14)	
$\sigma_{\text {janmay }}$	Standard deviation from the residuals for juvenile sardine: anchovy from commercial catches between January and May	-	A.50,(A.14)	
$\varepsilon_{y, j a n m a y}$	Residuals for juvenile sardine: anchovy from commercial catches between January and May	-	A. 49 (A.50)	
k_{m}	Estimated bias in residuals for juvenile sardine: anchovy from commercial catches during month m	-	A. 51 (A.19,A.22)	

Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation	Notes
$\varepsilon_{y, m}$	Residuals for juvenile sardine: anchovy from commercial catches during month m		A.20, A. 23 (A.18,A.22)	
σ_{m}	Standard deviation from the residuals for juvenile sardine: anchovy from commercial catches during month m	-	A. 53 (A.19,A.22)	
ρ_{m}	Correlation coefficient between the residuals for juvenile sardine: anchovy from commercial catches during months $m-1$ and m	-	A. 54 (A.20,A.23)	
$C_{y, m}^{A, p r e d}$	OM predicted anchovy catch in month m of year y, for use in calculating the drop-off in small sardine bycatch with anchovy	Thousands of tons	A.24-A. 28 (A.21)	
p_{m}	Average proportion of total anchovy catch during July to December that is taken in month m	-	(A.25-A.28)	
$B_{j, y}^{i, o b s}$	November acoustic survey estimate of total biomass of component j of species i in year y	Thousands of tons	A. 31	Observed data input to the Harvest Control Rule; simulated during OMP testing by equation A. 31
$k_{j, N}^{i}$	Multiplicative bias associated with the acoustic survey estimate of November total biomass of component j of species i	-	(A.31)	Sampled from Bayesian posterior distributions of de Moor (2017c,d)
$\varepsilon_{j, y, N o v}^{i}$	Residuals in the simulated observation of November survey estimate of total biomass from OM predicted November biomass in year y of component j of species i	-	A.32,A.33(A.31)	
$\tilde{\sigma}_{j, y, N o v}^{i}$	Standard deviation of the residuals $\varepsilon_{j, y, N o v}^{i}$, being the November survey sampling CV	-	A.34,A.35,(A.32,A.33)	
$\rho_{\text {Nov }}$	Correlation in the residuals between sardine and anchovy November survey estimates of total biomass	-	A. 44 (A.33)	

Table A1. Parameter definitions.

	Operating Model parameters	Units	Used in Equation	Notes
$\varphi_{a c}$	CV associated with the factors which cause bias in the sardine acoustic survey estimates and which vary inter-annually rather than remain fixed over time			$\left(\varphi_{a c}\right)^{2}=0.227$ from de Moor and Butterworth 2016a
$\left(\lambda_{N}^{i}\right)^{2}$	Additional variance (over and above the survey sampling CV and $\left.\left(\varphi_{a c}\right)^{2}\right)$ associated with the November survey of species i			
$k_{j, r}^{i}$	Multiplicative bias associated with the acoustic survey estimate of May recruitment of component j of species i	-	(A.36)	Sampled from Bayesian posterior distributions of de Moor (2017c,d)
$\varepsilon_{j, y, r e c}^{i}$	Residuals in the simulated observation of May survey estimate of recruitment from OM predicted recruitment in year y of component j of species i	-	A.37,A.38,(A.36)	
$\tilde{\sigma}_{j, y, r e c}^{i}$	Standard deviation of the residuals $\varepsilon_{j, y, \text { rec }}^{i}$, being the May recruit survey sampling CV	-	A.39,A.40,(A.37,A.38)	
$\rho_{\text {rec }}$	Correlation in the residuals between sardine and anchovy survey estimates of recruitment	-	A. 47 (A.38)	
$\left(\lambda_{r}^{i}\right)^{2}$	Additional variance (over and above the survey sampling CV) associated with the May recruit survey of species i			
$C_{y, m}^{A}$	Observed anchovy catch from landings that have targeted anchovy during month $m,(m=$ janmay, may,jun,jul, aug, sep,octdec) in year y	Thousands of tons	(A.48,A.49)	Observed data
$C_{y, m}^{S, b y c}$	$\begin{aligned} & \text { Observed }<14 \mathrm{~cm} \text { sardine bycatch during from landings that have targeted } \\ & \text { anchovy during month m, } \quad \mathrm{m}= \\ & \text { janmay, may,jun, jul, aug, sep, octdec) in year } y \end{aligned}$	Thousands of tons	(A.48,A.49)	Observed data
$\widehat{N}_{j, y, 0}^{i}$	OM predicted recruitment of component j of species i in November y	Billions	(A.48,A.495)	Sampled from Bayesian posterior distributions of de Moor (2017c,d)
K_{j}^{i}	Average pristine level ("carrying capacity") for component j of species i	Thousands of tons		Sampled from Bayesian posterior distributions of de Moor (2017c,d)

Table A2. Average 1984 to 2015 weights-at-age (in grams) from the historical catches ($\bar{w}_{j, a c}^{i}, i=S, A$). As sardine catch weight-at-age is not directly available, the average over all years is taken from proxy-annual catch weights-at-age calculated ${ }^{30}$ as an average of the November survey weight at age a in year $y-1$ and weight-at-age $a+1$ in year y.

Sardine single stock			Sardine west component		
	'Normal' years	'Peak' years		'Normal' years	'Peak' years
$\bar{W}_{1,0 c}^{S}$	20.86	13.18	$\bar{W}_{1,0 c}^{S}$	17.99	18.09
$\bar{W}_{1,1 c}^{s}$	60.57	49.58	$\bar{W}_{1,1 c}^{s}$	58.56	58.81
$\bar{W}_{1,2 c}^{s}$	88.62	82.95	$\bar{W}_{1,2 c}^{s}$	87.48	87.62
$\bar{W}_{1,3 \mathrm{c}}^{\mathrm{S}}$	97.35	95.77	$\bar{W}_{1,3 \mathrm{c}}^{\mathrm{S}}$	95.04	95.07
$\bar{W}_{1,4 c}^{s}$	99.53	99.14	$\bar{W}_{1,4 c}^{S}$	96.60	96.60
$\bar{w}_{1,5+c}^{S}$	99.95	99.80	$\bar{W}_{1,5+c}^{S}$	96.85	96.85
Sardine south component			Anchovy		
	'Normal' years	'Peak' years			
$\bar{W}_{2,0 c}^{S}$	16.01	16.04	$\bar{w}_{0 c}^{A}$	5.48	
$\bar{W}_{2,1 c}^{S}$	53.11	53.31	$\bar{w}_{1 c}^{A}$	12.70	
$\bar{W}_{2,2 c}^{S}$	81.37	81.50			
$\bar{w}_{2,3 \mathrm{c}}^{\mathrm{S}}$	90.14	90.17			
$\bar{W}_{2,4 c}^{S}$	92.28	92.29			
$\bar{w}_{2,5+c}^{s}$	92.69	92.69			

[^14]Table A3. Anchovy catch (in thousands of tons) from landings that have targeted* anchovy ($C_{y, m}^{A}$), for five-month ("janmay"), five single month ("may", "jun", "jul", "aug", "sep"), and a three-month ("octdec") periods, with the associated recorded landings of $<14 \mathrm{~cm}$ sardine bycatch ($C_{y, m}^{S, b y c}$, also in thousands of tons).

Year	$C_{y, j a n m a y}^{A}$	$C_{y, \text { may }}^{A}$	$C_{y, j u n}^{A}$	$C_{y, j u l}^{A}$	$C_{\text {y,aug }}^{A}$	$C_{y, \text { sep }}^{A}$	$C_{y, o c t d e c}^{A}$	$C_{\text {y,janmay }}^{\text {S,byc }}$	$\begin{gathered} C_{y, \text { may }}^{S, b y c} \end{gathered}$	$C_{y, j u n}^{S, b y c}$	$C_{\text {y,jul }}^{\text {S,byc }}$	$\begin{gathered} C_{y, a u g}^{S, b y c} \\ \hline \end{gathered}$	$C_{y, \text { sep }}^{S, b y c}$	$\begin{aligned} & C_{y, o c t d e c}^{S, b y c} \\ & \hline \end{aligned}$
1987	377.5	14.9	50.6	78.5	67.9	24.4	\#	1.1	0.3	1.0	1.2	1.0	0.2	\#
1988	252.5	50.1	74.3	60.7	70.4	38.7	73.9	1.0	0.8	1.9	0.4	0.5	0.1	0.3
1989	233.4	83.0	39.2	13.7	\#	\#	\#	5.1	2.7	1.2	0.3	\#	+	\#
1990	88.6	36.3	59.5	0.5	0.2	0.0	\#	3.2	1.9	3.5	0.0	0.0	0.0	\#
1991	90.7	22.7	51.4	6.1	1.0	0.0	\#	2.8	0.4	1.6	0.0	0.0	0.0	\#
1992	178.6	58.8	34.6	44.3	56.3	26.2	4.8	3.2	1.5	2.3	2.1	2.5	0.3	0.0
1993	110.9	13.0	0.8	10.8	67.0	38.4	3.0	2.3	1.2	0.2	0.6	1.6	0.6	0.1
1994	94.6	38.8	17.1	0.2	29.2	2.8	\#	5.2	3.1	1.6	0.0	2.2	0.0	\#
1995	56.0	13.1	35.1	31.7	37.2	1.7	11.3	2.5	1.3	4.1	5.1	5.9	0.1	1.7
1996	20.9	9.2	13.4	0.2	\#	\#	0.0	3.2	1.3	1.5	0.0	\#	\#	0.0
1997	0.6	0.5	0.7	20.0	10.1	21.3	3.3	0.1	0.1	0.3	1.4	0.7	2.9	0.8
1998	39.7	22.4	42.0	11.9	3.7	4.3	1.2	4.8	3.4	4.2	0.9	0.2	0.5	0.1
1999	30.3	18.9	28.2	20.0	33.2	51.5	13.9	1.7	1.3	2.1	0.5	0.7	0.7	0.2
2000	103.1	41.2	15.7	50.8	55.0	34.1	5.8	3.1	1.0	0.8	0.3	0.2	0.0	0.0
2001	84.1	32.7	44.9	10.1	30.0	50.9	62.3	3.4	2.2	2.6	1.1	3.3	1.0	0.8
2002	35.0	6.6	48.6	48.1	33.8	43.5	0.3	0.9	0.3	1.8	1.3	5.5	2.3	0.0
2003	41.1	23.2	77.5	47.9	16.7	39.8	28.7	3.9	2.0	3.9	1.1	0.1	0.2	0.5
2004	58.5	38.6	20.2	65.4	22.4	15.6	0.7	3.5	2.9	0.5	0.7	0.6	0.2	0.0
2005	133.6	55.8	21.2	42.0	27.0	42.9	10.9	2.7	1.3	0.4	0.4	0.3	0.5	0.2
2006	19.0	7.0	31.1	35.5	20.6	22.4	1.9	0.9	0.6	1.7	1.8	0.9	1.6	0.1
2007	77.0	57.6	31.0	34.4	37.3	43.5	27.2	2.3	1.5	0.4	0.2	0.1	0.1	0.2
2008	69.9	34.9	21.1	26.3	59.1	28.8	58.6	1.6	1.5	0.6	0.3	0.5	0.1	0.1
2009	53.6	18.6	8.8	38.2	35.2	27.7	8.9	1.0	0.3	0.3	0.4	0.6	0.1	0.1
2010	63.3	14.8	39.2	65.6	39.4	4.9	0.1	6.3	2.5	5.4	3.9	1.3	0.0	0.1
2011	42.9	22.0	16.5	39.3	13.8	\#	\#	4.3	3.1	1.2	2.8	1.2	\#	\#
2012	162.9	57.7	32.0	43.9	21.8	31.7	12.4	5.3	2.3	0.7	0.3	0.2	0.1	0.0
2013	43.9	17.7	12.5	3.4	3.5	8.0	6.3	3.2	0.0	0.0	0.0	0.0	0.1	0.0
2014	162.9	42.9	3.9	21.9	19.2	21.1	8.6	5.8	0.0	0.0	0.1	0.0	0.0	0.0
2015	172.0	68.4	28.5	29.0	4.3	0.2	0.8	12.7	4.6	0.4	0.1	0.0	0.0	0.0

[^15]

Figure A1. The historical $>14 \mathrm{~cm}$ sardine bycatch with round herring and anchovy. The circles are data from Johan de Goede and the diamonds are data from Jan van der Westhuizen. The distribution from which future samples are made (equation A.10) consists of the observations from the most recent 10 years only.

Figure A2. The historical ratio of $\leq 14 \mathrm{~cm}$ sardine to $>14 \mathrm{~cm}$ sardine in the directed sardine fishery for a) all catch ${ }^{31}$, b) catch west of Cape Agulhas and c) catch south of Cape Agulhas ${ }^{32}$. The open diamonds indicate historical ratios above the ratio used to set the $\leq 14 \mathrm{~cm}$ sardine TAB with directed $>14 \mathrm{~cm}$ sardine TAC; these are set at the maximum values (of 7% for a single-area directed sardine TAC and the west-area TAC and 1% for the south-area TAC) in the distribution from which future samples, $\omega_{j, y}^{d r a w}$, are made (equations A.14, A. 15 and A.21).

[^16]

Figure A3. The regressions of the ratio of small sardine bycatch : anchovy ${ }^{33}$ in the monthly commercial catch against that observed in the recruit survey, i.e. minimising $\sum_{y=2006}^{2015}\left[\left(C_{y, m}^{S, b y c} / C_{y, m}^{A}\right)-k_{m}\left(N_{1, y, r}^{S, o b s} / N_{1, y, r}^{A, o b s}\right)\right]^{2}$ w.r.t. k_{m}. The outliers of commercial ratio of 0.69 in October to December 2010 (shown as an open diamond) is removed, as this could have been biased by the mid-water trawl experiments which occurred during this time. The regression including this outlier is given by the dotted line. The k_{m} 's obtained when considering all years (1987-2015) are also given in brackets.

[^17]

Figure A4. The regressions between observed survey CV^{2} and model predicted abundance for a) anchovy November, b) sardine single stock November, c) sardine west component November, d) sardine south component November, e) anchovy May, f) sardine single stock May, g) sardine west component May and h) sardine south component May, for use in equations (A.29), (A.30), (A.32) and (A.33). In b) the outlier (767,0.17) was excluded from the regression.

[^0]: * MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

[^1]: ${ }^{1}$ The sardine stock assessment was fit to quarterly commercial proportion at length data and thus catch was modelled to be taken quarterly (de Moor and Butterworth 2016a,b). The catch tonnage between 1984 and 2015, however, is almost equally split from 1 November to 30 April and 1 May to 31 October.

[^2]: ${ }^{2} 37 \%$ for 1984 to 2015
 ${ }^{3} 27 \%$ for 1984 to 2015

[^3]: ${ }^{4}$ With the restriction that $k_{\text {janmay }} \frac{N_{1, y-1,0}^{\text {S.pred }}}{N_{1, y-1,0}^{A, p r e d}} e^{\sigma_{\text {janmay }} \eta_{y, j a n m a y ~}}<0.5$. See footnote 7 .
 ${ }^{5}$ During OMP implementation, $r_{y, c o m}$ will be an observed ratio.

[^4]: ${ }^{6}$ Bycatch from $1^{\text {st }}$ to $15^{\text {th }}$ May approximated by half the bycatch from the full month of May.
 ${ }^{7}$ Once all errors are considered, some relatively high ratios can be simulated in a small proportion of projections. While this occurs infrequently, the resultant model predicted bycatch is likely unrealistic. It is expected that in practice if high ratios of juvenile sardine with anchovy were observed, adaptive management e.g. through the Sea Management Council would help restrict the sardine bycatch with anchovy. Maximum ratios observed in past catches are 0.23 (January-May), 0.23 (May), 0.39 (June), 0.16 (July), 0.16 (August), 0.14 (September) and 0.69 (October-December), although the latter was considered an outlier, see legend of Figure A3. Thus $r_{y, m}<0.5$ and $r_{y}<0.5$ in all simulations.

[^5]: ${ }^{9}$ Average from 1984 to 2015 is 42%.
 ${ }^{10}$ Average from 1984 to 2015 is 28%.
 ${ }^{11}$ Average from 1984 to 2015 is 20%.

[^6]: ${ }^{12}$ In the two sardine component OM, the assumption is made that anchovy biomass and recruitment is only correlated with the west component.
 ${ }^{13}$ For the sardine single stock OM, from the base case OM with hockey stick stock recruitment curve (de Moor and Butterworth 2016b)
 ${ }^{14}$ For the sardine two component OM, from the base case OM with hockey stick stock recruitment curves (de Moor and Butterworth 2016a).
 ${ }^{15}$ From the anchovy base case OM with a Beverton Holt stock recruitment curve (de Moor 2016b).

[^7]: ${ }^{16}$ The final TAC was 354 326t, but anchovy was substantially undercaught during 2016. The TAC in the simulations is thus rather set equal to the total 2016 anchovy catch.
 ${ }^{17}$ The final directed sardine TAC for 2017 was 45560 , but indications are this will be undercaught. The TAC and split is thus based on the allowable catch west of Cape Agulhas during 2017 (24 140t) and the catches taken east of Cape Agulhas up to October 2017 (3617t)
 ${ }^{18}$ The initial anchovy TAC was $247000 t$ and the final TAC was 450000 t, but anchovy was substantially undercaught during 2017. The TACs in the simulations were thus rather set equal to the 2017 catches up to October $+1 \%$, where 1% is the average November-December catches as a ratio of January-October catches.
 ${ }^{19}$ No modification to equations (A.29) and (A.30) is necessary as the anchovy fishery is now known to have not been closed during 2016 and 2017.
 ${ }^{20}$ The small sardine bycatch with anchovy was 3986t up to the end of October; this is increased by 1% for November and December.
 ${ }^{21}$ Based on observed catches west:east of Cape Agulhas during 2016.

[^8]: ${ }^{22}$ The assumption is made that all juvenile catch was taken west of Cape Agulhas.

[^9]: ${ }^{23}$ Equation (A.6) defines the distribution of recruitment predicted by the stock-recruitment relationship. For this calculation, the best estimate (centre of the distribution) is used to average with the survey-based estimate of November 2015 recruitment.

[^10]: ${ }^{24}$ The sum is taken over all years for which a survey estimate of recruitment exists.

[^11]: ${ }^{25}$ Summing over years for which anchovy directed catch in month m is non-zero.
 ${ }^{26}$ For $\rho_{\text {may }}$, month $m-1=$ janmay.

[^12]: ${ }^{27}$ This differs for each sample from the posterior distribution and thus a table of weights is not provided in this document.

[^13]: ${ }^{28}$ The average over quarters 2 and 3 is assumed since in past years, on average, 11% of the directed catch was in quarter 1 and 15% in quarter 4 , while 43% and 32% were in quarters 2 and 3 , respectively.
 ${ }^{29}$ The $>14 \mathrm{~cm}$ TAB also allows for some bycatch with anchovy.

[^14]: ${ }^{30}$ At the joint posterior mode for each baseline OM.

[^15]: * A landing is assumed to have targeted anchovy when the ratio anchovy : (anchovy + directed sardine + horse mackerel + round herring) exceeds 0.5 (in terms of mass).
 \# As no anchovy were landed during these months, sardine bycatch with anchovy is not applicable.

[^16]: ${ }^{31}$ Used for the single-area sardine TAC with single-component scenario only.
 ${ }^{32}$ These are used for the two-area sardine TAC scenarios, and additionally for the single-area sardine TAC and twocomponent scenario to allow for the differential bycatch on the components distributed on the west and south coasts.

[^17]: ${ }^{33}$ For cases where anchovy is the most common species by mass in the landing

