Specifications of the South African Hake 2017 Reference Case Assessment

Rebecca A. Rademeyer and Doug S. Butterworth

November 2017

Introduction

This paper gives full algebraic specifications of the 2017 South African hake Reference Case assessment. The data used as inputs to the Reference Case are listed in Appendix A. Parameter estimates are also included. The Reference Case results are given in Appendix B.

The Statistical Catch-at-Length model

The model used is a gender-disaggregated Statistical Catch-at-Length (SCAL), which is fitted directly to age-length keys (ALKs) and length frequencies. The model also assesses the two species as two independent stocks and is fitted to species-disaggregated data as well as species-combined data. A distinction is made between the west and the south coasts, with hake movement surrogated using the "areas-as-fleets" approach. "Fleet" below therefore refers to a combination of gear type (offshore trawl, inshore trawl, longline and handline) and area (west and south coasts). The general specifications and equations of the overall model are set out below, together with some key choices in the implementation of the methodology. Details of the contributions to the log-likelihood function from the different data considered are also given. Quasi-Newton minimisation is used to minimise the total negative log-likelihood function (implemented using AD Model Builder ${ }^{\mathrm{TM}}$, Otter Research, Ltd. (Fournier et al. 2011)).

1 Population Dynamics

1.1 Numbers-at-age

The resource dynamics of the two populations (Merluccius capensis and M. paradoxus) of the South African hake are modelled by the following set of equations.

Note: for ease of reading, the 'species' subscript s has been omitted below where equations are identical for the two species.
$N_{y+1,0}^{g}=R_{y+1}^{g}$
$N_{y+1, a+1}^{g}=\left(N_{y a}^{g} e^{-M_{a}^{g} / 2}-\sum_{f} C_{f y a}^{g}\right) e^{-M_{a}^{g} / 2} \quad$ for $0 \leq a \leq m-2$
$N_{y+1, m}^{g}=\left(N_{y, m-1}^{g} e^{-M_{m-1}^{g} / 2}-\sum_{f} C_{f, y, m-1}^{g}\right) e^{-M_{m-1}^{g} / 2}+\left(N_{y m}^{g} e^{-M_{m}^{g} / 2}-\sum_{f} C_{\delta m}^{g}\right) e^{-M_{m}^{g} / 2}$
where
$N_{y a}^{g} \quad$ is the number of fish of gender g and age a at the start of year y^{l};
$R_{y}^{g} \quad$ is the recruitment (number of 0 -year-old fish) of fish of gender g at the start of year y;
$m \quad$ is the maximum age considered (taken to be a plus-group);
$M_{a}^{g} \quad$ denotes the natural mortality rate on fish of gender g and age a; and

[^0]$C_{f y a}^{g} \quad$ is the number of hake of gender g and age a caught in year y by fleet f.

A penalty is added to the negative \log-likelihood to prevent $N_{y, a}^{g}$ from going below 10 for $\mathrm{a}<=10$, and below 1 for $a>=11$.

1.2 Recruitment

The number of recruits (i.e. new zero-year old fish) at the start of year y is assumed to be related to the corresponding female spawning stock size (i.e., the biomass of mature female fish). The underlying assumptions are that female spawning output can limit subsequent recruitment, but that there are always sufficient males to provide adequate fertilisation. The recruitment and corresponding female spawning stock size are related by means of the Beverton-Holt (Beverton and Holt 1957) or a modified (generalised) form of the Ricker stock-recruitment relationship. These forms are parameterized in terms of the "steepness" of the stock-recruitment relationship, h, the pre-exploitation equilibrium female spawning biomass, $K^{\circ, s p}$, and the pre-exploitation recruitment, R_{0}, with a $50: 50$ sex-split at recruitment being assumed:
$R_{y}^{g}=\frac{4 h R_{0} B_{y}^{o, s p}}{K^{\rho, s p}(1-h)+(5 h-1) B_{y}^{\rho, s p}} e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)}$
for the Beverton-Holt stock-recruitment relationship and
$R_{y}^{g}=\alpha B_{y}^{\rho, s p} \exp \left(-\beta\left(B_{y}^{\rho, s p}\right)^{\gamma}\right) e^{\left(\varsigma_{y}-\sigma_{k}^{2} / 2\right)}$
with
$\alpha=R_{0} \exp \left(\beta\left(K^{\rho, s p} \gamma\right) / K^{Q_{s p}} \quad\right.$ and $\quad \beta=\frac{\ln (5 h)}{\left(K^{\rho, s p}\right)^{\gamma}\left(1-5^{-\gamma}\right)}$
for the modified Ricker relationship (for the true Ricker, $\gamma=1$) where
$\varsigma_{y} \quad$ reflects fluctuation about the expected recruitment in year y;
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input ($\sigma_{R}=0.45$ and is taken to decrease linearly from this value to 0.1 over the last five years to statistically stabilise estimates of recent recruitment).
Note: $e^{\left(\varsigma_{y}-\sigma_{R}^{2} / 2\right)}$ is included only for the years for which the residuals are estimated, i.e. 1985 to 2017.
$B_{y}^{\circ}{ }_{y}^{\rho, s p} \quad$ is the female spawning biomass at the start of year y, computed as:
$B_{y}^{\odot, s p}=\sum_{a=1}^{m} f_{a}^{\odot} w_{a}^{\odot} N_{y a}^{\odot}$
where
$w_{a}^{g} \quad$ is the begin-year mass of fish of gender g and age a;
$f_{a}^{g} \quad$ is the proportion of fish of gender g and age a that are mature (converted from maturity-at-length, see equation 46); and

For the Beverton-Holt form, h is bounded above by 0.98 to preclude high recruitment at extremely low spawning biomass, whereas for the modified Ricker form, h is bounded above by 1.5 to preclude extreme compensatory behaviour. The Reference Case uses the modified Ricker form to model recruitment.

1.3 Total catch and catches-at-age

The fleet-disaggregated catch by mass, in year y is given by:

$$
\begin{equation*}
C_{f y}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f, a+1 / 2}^{g} C_{f y a}^{g}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f, a+1 / 2}^{g} N_{y,}^{g} e^{-e^{g} / 2} F_{f y} S_{f ; j a}^{g} \tag{7}
\end{equation*}
$$

where
$C_{f y a}^{g} \quad$ is the catch-at-age, i.e. the number of fish of gender g and age a, caught in year y by fleet f;
$F_{f y} \quad$ is the fished proportion of a fully selected age class by fleet f in year y.
$F_{f y}$ is independent of g for all fleet except the longline fleet, for which male proportions are available. Therefore for the longline fleet:

$$
\begin{equation*}
F_{f j}^{g}=C_{b j}^{g} / \sum_{a=0}^{m} \tilde{w}_{f, a+1 / 2}^{g} N_{y a}^{g} e^{-M_{a}^{g} / 2} S_{b a}^{g} \tag{8}
\end{equation*}
$$

where $C_{b y}^{g}=L_{f j}^{g} C_{f v}$
with $L_{f j}^{\text {males }}$ given in Table 1 below.
Table 1: Male proportion in the longline catches. For years prior to 2000 and post 2010, the 2000-2010 average is used.

West coast			South coast	
	M. paradoxus	M. capensis	M. paradoxus	M. capensis
2000	0.35699	0.09755	0.46030	0.29340
2001	0.05378	0.13431	0.52645	0.38234
2002	0.26296	0.13852	0.46030	0.36548
2003	0.22694	0.22288	0.46030	0.31665
2004	0.12542	0.10752	0.46030	0.26581
2005	0.05788	0.14946	0.46030	0.16476
2006	0.04562	0.10308	0.28792	0.27210
2007	0.03721	0.34383	0.46030	0.29340
2008	0.22329	0.29265	0.34573	0.27928
2009	0.22402	0.33734	0.61493	0.21179
2010	0.05378	0.13431	0.52645	0.38234

Note: a penalty is added so that $F_{f j}<0.95$ and another so that $\sum_{f} S_{5 a}^{g} F_{f j}<1$ for each age.
$S_{f y a}^{g}=\sum_{l} S_{f y l}^{g} P_{a+1 / 2, l}^{g}$
$S_{f y a}^{g} \quad$ is the commercial selectivity of gender g at age a for fleet f and year y;
$S_{f y l}^{g} \quad$ is the commercial selectivity of gender g at length l for year y, and fleet f, normalised to have a maximum of 1 ;
$\tilde{w}_{f, a+1 / 2}^{g}=\sum_{l} S_{f l}^{g} w_{l}^{g} P_{a+1 / 2, l}^{g} / \sum_{l} S_{f l}^{g} P_{a+1 / 2, l}^{g}$
$\tilde{w}_{f y, a+1 / 2}^{g}$ is the selectivity-weighted mid-year weight-at-age a of gender g for fleet f and year y;
$w_{l}^{g} \quad$ is the weight of fish of gender g and length $l ;$
$P_{a+1 / 2, l}^{g}$ is the mid-year proportion of fish of age a and gender g that fall in the length group l (thus $\sum_{l} P_{a+1 / 2 l}^{g}=1$ for all ages a).

The matrix P is calculated under the assumption that length-at-age is log-normally distributed about a mean given by the von Bertalanffy equation, i.e.:
$\ln l_{a} \sim N\left[\ln \left(l_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)\right) ;\left(\frac{\theta_{a}}{l_{\infty}\left(1-e^{-\kappa\left(a-t_{0}\right)}\right)}\right)^{2}\right]$
where θ_{a} is the standard deviation of length-at-age a, which is estimated directly in the model fitting for age 0 , and for ages 1 and above a linear relationship applies:
$\theta_{a}=\left\{\begin{array}{cc}\theta_{0} & \text { for } a=0 \\ \left((a-1) \frac{\theta_{14}-\theta_{1}}{13}+\theta_{1}\right) & \text { for } 1 \leq a \leq m\end{array}\right.$
with species and gender-specific θ_{0}, θ_{1} and θ_{14} estimated in the model fitting procedure. A penalty is added to ensure that θ_{a} is increasing with age, i.e. $\theta_{14}>\theta_{0}$.

1.4 Exploitable and survey biomasses

The model estimate of the mid-year exploitable ("available") component of biomass for each species and fleet is calculated by converting the numbers-at-age into mid-year mass-at-age and applying natural and fishing mortality for half the year:

$$
\begin{equation*}
B_{b j}^{e x}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{f, a+1 / 2}^{g} S_{f a}^{g} N_{y a}^{g} e^{-M_{a}^{g} / 2}\left(1-\sum_{f} S_{f a}^{g} F_{f j} / 2\right) \tag{12}
\end{equation*}
$$

The model estimate of the survey biomass is given by:
$B_{y}^{s u r v}=\sum_{g} \sum_{a=0}^{m} \tilde{w}_{a}^{g, s u r r} S_{a}^{g, s u r v} N_{y a}^{g} e^{-M \frac{g_{a}^{s}}{\frac{s}{12}}}\left(1-\frac{t^{s u r v}}{12} \sum_{f} S_{\delta o u}^{g} F_{f j}\right)$
where
$t^{s u r v}$ is the month (on average) in which survey surv took place (1, 7, 9 and 4 for summer, winter, spring and autumn surveys respectively),
$S_{a}^{g, s u r v} \quad$ is the survey selectivity of gender g for age a, converted from survey selectivity-at-length in the same manner as for the commercial selectivity (equation 9);
$\tilde{w}_{a}^{g, s u r v}$ is the survey selectivity-weighted weight-at-age a of gender g for survey i, computed in the same manner as for the commercial selectivity-weight-at-age (equation 10) and taking account of the timing of the survey ($\tilde{w}_{y, a}^{s, s u r v}$ from $P_{a, l}^{g}$ if $t^{s u r v}$ is less or equal to 6 and from $P_{a+1 / 2, l}^{g}$ otherwise).

1.5 Initial conditions

It is assumed that the resource is at the deterministic equilibrium that corresponds to an absence of harvesting at the start of the initial year considered, i.e., $B_{1}^{g, s p}=K^{g, s p}$, and the year $y=1$ corresponds to 1917 when catches commence.

2. MSY and related quantities

The equilibrium catch for a fully selected fishing proportion F^{*} is calculated as:

$$
\begin{equation*}
C\left(F^{*}\right)=\sum_{g} \sum_{a} \tilde{w}_{a+1 / 2}^{g} S_{a}^{g} F^{*} N_{a}^{g}\left(F^{*}\right) e^{-\frac{\left(M_{a}^{g}+S_{a}^{g} F^{*}\right)}{2}} \tag{14}
\end{equation*}
$$

where
S_{a}^{8} is the average selectivity across all fleets, for the most recent five years:
$S_{a}^{s}=\frac{\sum_{y=2012}^{2016} \sum_{f} S_{f o}^{s} F_{f j}}{\max \left(\sum_{y=2012}^{2016} \sum_{f} S_{f o}^{s} F_{f}\right)}$
where the maximum is taken over ages;
and $\tilde{w}_{a+1 / 2}^{g}$ is the average selectivity-weighted weight-at-age, for the most recent five years:
$\tilde{w}_{a+1 / 2}^{g}=\frac{\sum_{y=2012}^{2016} \sum_{f} \tilde{w}_{f, y, a+1 / 2}^{s} F_{\delta}}{\sum_{y=2016}^{2016} \sum_{f} F_{\delta}}$
and with

where
$R_{0}\left(F^{*}\right)=\frac{\alpha B^{\curvearrowright s p}\left(F^{*}\right)}{\beta+B^{\rho s p}\left(F^{*}\right)}$
for a Beverton-Holt stock-recruitment relationship, and
$R_{0}\left(F^{*}\right)=\alpha B_{y}^{\kappa s p}\left(F^{*}\right) \exp \left(-\beta\left(B_{y}^{凤, s p}\left(F^{*}\right)\right)^{\gamma}\right)$
for a modified Ricker stock-recruitment relationship.
The maximum of $C\left(F^{*}\right)$ is then found by searching over F^{*} to give $F_{\text {MSY }}^{*}$, with the associated female spawning biomass given by:

$$
\begin{equation*}
B_{\text {MSY }}^{\circ}+s p=\sum_{a} f_{a}^{\circ} w_{a}^{\circ} N_{a}^{\circ}\left(F_{\mathrm{MSY}}^{*}\right) \tag{19}
\end{equation*}
$$

3. The likelihood function

The model is fit to CPUE and survey biomass indices, commercial and survey length frequencies, survey age-length keys, as well as to the stock-recruitment curve to estimate model parameters. Contributions by each of these to the negative of the log-likelihood $(-\ell \mathrm{n} L)$ are as follows ${ }^{2}$.

3.1 CPUE relative biomass data

The likelihood is calculated by assuming that the observed biomass index (here CPUE) is log-normally distributed about its expected value:
$I_{y}^{i}=\hat{I}_{y}^{i} e^{\varepsilon_{y}^{i}} \quad$ or $\quad \varepsilon_{y}^{i}=\ln \left(I_{y}^{i}\right)-\ln \left(\hat{I}_{y}^{i}\right)$

[^1]where
$I_{y}^{i} \quad$ is the biomass index for year y and series i (which corresponds to a specified species and fleet);
$\hat{I}_{y}^{i}=\hat{q}^{i} \hat{B}_{f y}^{e x}$ is the corresponding model estimate, where $\widehat{B}_{f y}^{e x}$ is the model estimate of exploitable resource biomass, given by equation 11 ;
$\hat{q}^{i} \quad$ is the constant of proportionality for biomass series i;and
$\varepsilon_{y}^{i} \quad$ from $N\left(0,\left(\sigma_{y}^{i}\right)^{2}\right)$.
In cases where the CPUE series are based upon species-aggregated catches (as available pre-1978), the corresponding model estimate is derived by assuming two types of fishing zones: z1) an "M. capensis only zone", corresponding to shallow-water and z2) a "mixed zone" (see diagrammatic representation in Figure 1).

The total catch of hake of both species $(B S)$ by fleet f in year $y\left(C_{B S, f y}\right)$ can be written as:

$$
\begin{equation*}
C_{B S, f y}=C_{C, f y}^{z 1}+C_{C, f y}^{z 2}+C_{P, f y} \tag{21}
\end{equation*}
$$

where
$C_{C, f y}^{z 1} \quad$ is the M. capensis catch by fleet f in year y in the M. capensis only zone (z1);
$C_{C, f y}^{z 2} \quad$ is the M. capensis catch by fleet f in year y in the mixed zone (z2); and
$C_{P, f y}$ is the M. paradoxus catch by fleet f in year y in the mixed zone.

Catch rate is assumed to be proportional to exploitable biomass. Furthermore, let γ_{c} be the proportion of the M. capensis exploitable biomass in the mixed zone ($\gamma_{C}=B_{C, y y}^{e x, z 2} / B_{C, f y}^{e x}$) (assumed to be constant throughout the period for simplicity) and $\psi_{f y}$ be the proportion of the effort of fleet f in the mixed zone in year $y\left(\psi_{f y}=E_{f y}^{z 2} / E_{f y}\right)$, so that:
$C_{C, f y}^{z 1}=q_{C}^{i, z 1} B_{C \gamma}^{e x, z 1} E_{f y}^{z 1}=q_{C}^{i, z 1}\left(1-\gamma_{C}\right) B_{C, f j}^{e x}\left(1-\psi_{f j}\right) E_{f y}$
$C_{C, f j}^{z 2}=q_{C}^{i, z 2} B_{C, f j}^{e x, z 2} E_{f j}^{z 2}=q_{C}^{i, z 2} \gamma_{C} B_{C, f j}^{e x} \psi_{f j} E_{f j} \quad$ and

$$
\begin{equation*}
C_{P, f y}=q_{P}^{i} B_{P, f y}^{e x} E_{f y}^{z 2}=q_{P}^{i} B_{P, f y}^{e x} \psi_{f y} E_{f y} \tag{23}
\end{equation*}
$$

where
$E_{f y}=E_{f y}^{z 1}+E_{f y}^{z 2}$ is the total effort of fleet f, corresponding to combined-species CPUE series i which consists of the effort in the M. capensis only zone ($E_{f y}^{z 1}$) and the effort in the mixed zone ($E_{f y}^{z 2}$);
$q_{C}^{i, z j} \quad$ is the catchability for M. capensis (C) for biomass series i, and zone $z j$; and
$q_{P}^{i} \quad$ is the catchability for M. paradoxus (P) for biomass series i.
It follows that:
$C_{C, f j}=B_{C, f y}^{e x} E_{f j}\left[q_{C}^{i, z 1}\left(1-\gamma_{C}\right)\left(1-\psi_{f j}\right)+q_{C}^{i, z 2} \gamma_{C} \psi_{f j}\right]$
$C_{P, f j}=B_{P, f j}^{e x} E_{f j} q_{P}^{i} \psi_{f j}$

From solving equations 25 and 26:
$\psi_{f j}=\frac{q_{C}^{i, z 1}\left(1-\gamma_{C}\right)}{\left\{\frac{C_{C, \delta k} B_{P, \delta 反}^{e x} q_{P}^{i}}{B_{C, \gamma j}^{e x} C_{P, f j}}-q_{C}^{i, z 2} \gamma_{C}+q_{C}^{i, z 1}\left(1-\gamma_{C}\right)\right\}}$

Note: a penalty is included so that $0<\psi_{\beta}<1$.
and:
$\hat{I}_{y}^{i}=\frac{C_{f y}}{E_{f y}}=\frac{C_{f y} B_{P, f f}^{e x} q_{P}^{i} \psi_{f y}}{C_{P, f y}}$

Zone 1 (z1):	Zone 2 (z2):
M. capensis only	Mixed zone
M. capensis:	M. capensis:
biomass $\left(B_{C}^{z 1}\right), \operatorname{catch}\left(C_{C}^{z 1}\right)$	biomass $\left(B_{C}^{z 2}\right), \operatorname{catch}\left(C_{C}^{z 2}\right)$ Effort in zone 1 $\left(E^{z 1}\right)$
M. paradoxus: biomass $\left(B_{P}\right), \operatorname{catch}\left(C_{P}\right)$ Effort in zone $2\left(E^{z 2}\right)$	

Figure 1: Diagrammatic representation of the two conceptual fishing zones.
Two species-aggregated CPUE indices are available: the ICSEAF West Coast and the ICSEAF South Coast series. For consistency, q 's for each species (and zone) are forced to be in the same proportion:
$q_{s}^{S C}=r q_{s}^{W C}$
The contribution of the CPUE data to the negative of the log-likelihood function (after removal of constants) is then given by:
$-\ln L^{\text {CPUE }}=\sum_{i} \sum_{y}\left[\ln \left(\sigma_{y}^{i}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\sigma_{y}^{i}\right)^{2}\right]$
where
$\sigma_{y}^{i} \quad$ is the standard deviation of the residuals for the logarithms of index i in year y.

Homoscedasticity of residuals for CPUE series is customarily assumed ${ }^{3}$, so that $\sigma_{y}^{i}=\sigma^{i}$ is estimated in the minimisation process. To correct for possible negative bias in estimates of variance (σ^{i}) and to avoid according unrealistically high precision (and so giving inappropriately high weight) to the CPUE data, lower bounds on the standard deviations of the residuals for the logarithm of the CPUE series have been enforced: for the historical ICSEAF CPUE series (separate West Coast and South Coast series) the lower bound is set to 0.25 , and to 0.15 for the recent GLM-standardised CPUE series, i.e.: $\sigma^{I C S E A F} \geq 0.25$ and $\sigma^{G L M} \geq 0.15$.

In the case of the species-disaggregated CPUE series, the catchability coefficient q^{i} for biomass index i is estimated by its maximum likelihood value, which in the more general case of heteroscedastic residuals is given by:
$\ln \hat{q}^{i}=\frac{\sum_{y}\left(\ln I_{y}^{i}-\ln \hat{B}_{f y}^{e x}\right) /\left(\sigma_{y}^{i}\right)^{2}}{\sum_{y} 1 /\left(\sigma_{y}^{i}\right)^{2}}$

In the case of the species-combined CPUE, $q_{C}^{W C, z 1}, q_{C}^{W C, z 2}, q_{P}^{W C}, r$ and γ_{C} are estimated directly in the fitting procedure.

[^2]
3.2 Survey biomass data

Data from the research surveys are treated as relative biomass indices in a similar manner to the species-disaggregated CPUE series above, with survey selectivity function $S_{a}^{g, \text { sum } / w i n}$ replacing the commercial selectivity $S_{\text {fya }}^{g}$ (see equation 13 above, which also takes account of the timing of the survey).

An estimate of sampling variance is available for most surveys and the associated σ_{y}^{i} is generally taken to be given by the corresponding survey CV. However, these estimates likely fail to include all sources of variability, and unrealistically high precision (low variance and hence high weight) could hence be accorded to these indices. The contribution of the survey data to the negative log-likelihood is of the same form as that of the CPUE biomass data (see equation 30). The procedure adopted takes into account an additional variance $\left(\sigma_{A}\right)^{2}$ which is treated as another estimable parameter in the minimisation process, i.e:

$$
\begin{equation*}
-\ln L^{\text {Survey }}=\sum_{i} \sum_{y}\left[\ln \left(\sqrt{\left(\sigma_{y}^{i}\right)^{2}+\left(\sigma_{A}\right)^{2}}\right)+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\left(\sigma_{y}^{i}\right)^{2}+\left(\sigma_{A}\right)^{2}\right)\right] \tag{32}
\end{equation*}
$$

This procedure is carried out enforcing the constraint that $\left(\sigma_{A}\right)^{2}>0$, i.e. the overall variance cannot be less than its externally input component.

In June 2003, the trawl gear on the Africana was changed and a different value for the multiplicative bias factor q is taken to apply to the surveys conducted with the new gear. Calibration experiments have been conducted between the Africana with the old gear (hereafter referred to as the "old Africana") and the Nansen, and between the Africana with the new gear ("new Africana") and the Nansen, in order to provide a basis to relate the multiplicative biases of the Africana with the two types of gear ($q_{\text {old }}$ and $q_{\text {new }}$). A recent calibration analysis based on "Model 1" (see Table 1, "Model 1" of Smith et al., 2013) provided the following estimates:
$\left(q^{\text {new }} / q^{\text {old }}\right)^{\text {capensis }}=0.652 \quad$ with $\mathrm{SE}=0.073$ and
$\left(q^{\text {new }} / q^{\text {old }}\right)^{\text {paradoxus }}=0.883 \quad$ with $\mathrm{SE}=0.082$.
The following contribution is therefore added as a penalty (or a log prior in a Bayesian context) to the negative loglikelihood in the assessment:
$-\ln L^{q-c h}=\sum_{i}\left(\ln q_{n e w}-\ln q_{o l d}-\Delta \mid n q\right)^{2} / 2 \sigma_{\Delta l n q}^{2}$

A different length-specific selectivity is estimated for the "old Africana" and the "new Africana", see section 4.1.2 below. The commercial vessel recently used in place of the Africana is assumed to have the same q and same selectivity as the Africana with the new net.

For the surveys, the q 's are estimated directly in the model fitting procedure.

3.3. Commercial proportions at length

Commercial proportions at length from the offshore trawl fleet cannot be disaggregated by species and gender as the data collected did not distinguish these. The model is therefore fit to the proportions at length as determined for both species and gender combined. The catches made by the inshore trawl fleet are assumed to consist of M. capensis only, and species and sex information is available over the 2000-2010 period for the longline fleet.

The catches at length are computed as:
$C_{\delta b l}^{s g}=\sum_{a=0}^{m} N_{s s a}^{s} F_{s f b} S_{s f l}^{g} P_{s, a+1 / 2, l}^{s} e^{-M_{s a}^{g} / 2}\left(1-\sum_{f} S_{s f f a}^{s} F_{b j} / 2\right)$
Where appropriate, the catches at length are summed over species and gender.

The predicted proportions at length are computed as:
$\hat{p}_{f y l}=\sum_{s} \sum_{g} C_{f y l}^{s g} / \sum_{s} \sum_{g} \sum_{l^{\prime}} C_{f y l^{\prime}}^{s g}$
for species- and sex-aggregated series (offshore trawl data),
$\hat{p}_{f y l}^{s}=\sum_{g} C_{f y l}^{s g} / \sum_{g} \sum_{l^{\prime}} C_{f y l^{\prime}}^{s g}$
for sex-aggregated series (inshore trawl data and some longline data), and
$\hat{p}_{b l}^{s g}=C_{b l}^{s g} / \sum_{g^{\prime}} \sum_{l^{\prime}} C_{b l l^{\prime}}^{s g^{\prime}}$
for sex-disaggregated series (2000-2010 longline data).
The commercial proportions at length are grouped into 2 cm length classes.
Due to the sex-imbalance of some of the catch data, some of the sex-disaggregated catch proportions are very small for all lengths for a particular gender (e.g. males M. paradoxus in the west coast longline catches). To deal with these small numbers, the " $\operatorname{sqrt}(p)$ " method is used to compute the contribution to the CAL data to the negative of the log-likelihood function instead of the Punt-Kennedy method (Punt and Kennedy, 1997) used previously. The formulation mimics a multinomial form for the error distribution by forcing a near-equivalent variance-mean relationship for the error distributions.
$-\ln L^{\mathrm{CAL}}=0.1 \sum_{y} \sum_{l}\left[\ln \left(\sigma_{l e n}^{i}\right)+\left(\sqrt{p_{y l}^{i}}-\sqrt{\hat{p}_{y l}^{i}}\right)^{2} / 2\left(\sigma_{\text {len }}^{i}\right)^{2}\right]$
where
the superscript ' i ' refers to a particular series of proportions at length data which reflect a specified fleet, species and sex (or combination thereof); and
$\sigma_{\text {len }}^{i}$ is the standard deviation associated with the proportion at length data, which is estimated in the fitting procedure by:
$\hat{\sigma}_{l e n}^{i}=\sqrt{\sum_{y} \sum_{l}\left(\sqrt{p_{y l}^{i}}-\sqrt{\hat{p}_{y l}^{i}}\right)^{2} / \sum_{y} \sum_{l} 1}$

In the case of sex-disaggregated CAL data, the standard deviation is computed for each gender separately.
The initial 0.1 multiplicative factor in equation 34 reflects a somewhat arbitrary downweighting to allow for correlation between proportions in adjacent length groups. The coarse basis for this adjustment is the ratio of effective number of age-classes present to the number of length groups in the minimisation, under the argument that independence in variability is likely to be more closely related to the former.

Use of the $\operatorname{sqrt}(p)$ formulation has the advantage that the CAL data do not need to be grouped into minus and plus groups.

3.4. Survey proportions at length

The survey proportions at length are incorporated into the negative of the log-likelihood in an analogous manner to the commercial catches-at-age, using the $\operatorname{sqrt}(p)$ formulation (equation 34).

$$
\begin{gathered}
p_{s y l}^{g, s u r v}=\frac{C_{s y l}^{g, s u v}}{\sum_{g} \sum_{l^{\prime}} C_{s y l^{\prime}}^{g, s u v}} \quad \text { is the observed proportion of fish of species } s, \text { gender } g \text { and length } l \text { from survey surv in year } \\
y ; \text { and }
\end{gathered}
$$

$\hat{p}_{s y l}^{g, s u r v}$ is the expected proportion of fish of species s, gender g and length l in year y in the survey surv, given by:

All juveniles fish ($<21 \mathrm{~cm}$) are assumed to be of unknown sex, so that the numerator in equation 38 above is also summed over g and similarly for surveys for which sex-disaggregation is not available. The expected proportions are computed using the begin-year age-length matrix for the summer and autumn surveys, and the mid-year age-length matrix for winter and spring surveys.

The survey proportions at length are grouped into 2 cm length classes.

3.5. Age-length keys

Under the assumption that fish are sampled randomly with respect to age within each length-class, the contribution to the negative log-likelihood for the ALK data (ignoring constants) is:
$-\ln L^{A L K}=-w \sum_{i} \sum_{l} \sum_{a}\left[A_{i a l}^{o b s} \ln \left(\hat{A}_{i a l}\right)-A_{i a l}^{o b s} \ln \left(A_{i a l}^{o b s}\right)\right]$
where
$w \quad$ is a downweighting factor to allow for overdispersion in these data compared to the expectation for a multinomial distribution with independent data; this downweighting factor is somewhat arbitrarily set to 0.01 to avoid these data overriding trend information in the indices of biomass;
$A_{i a l}^{o b s} \quad$ is the observed number of fish of size class l that have been read as of age a for ALK i (a specific combination of survey, year, species and gender);
$\hat{A}_{i a l} \quad$ is the model estimate of $A_{i a l}^{o b s}$, computed as:
$\hat{A}_{i a l}=W_{i l} \frac{\tilde{c}_{i a l}}{\sum_{a^{\prime}} \tilde{c}_{i a^{\prime} l}}$
where
$\tilde{C}_{i a l}=N_{s y a}^{g} \tilde{P}_{a, l} S_{l}^{i} e^{-M_{s a}^{g} \frac{t^{i}}{12}}\left(1-\frac{t^{i}}{12} \sum_{f} S_{f y a}^{g} F_{f y}\right)$
$S_{l}^{i} \quad$ is the selectivity-at-length l for ALK i,
$t^{i} \quad$ is the month (on average) in which the ALK was sampled ($=t^{\text {surv }}$ (equation 13) for surveys and $=6$ for commercial)
$W_{i, l} \quad$ is the number of fish in length class l that were aged for ALK i,
$\tilde{P}_{a, l}=\sum_{a} Y\left(a^{\prime} \mid a\right) P_{a, l}$ is the ALK for age a and length l after accounting for age-reading error,
with
$Y\left(a^{\prime} \mid a\right)$ the age-reading error matrix, representing the probability of an animal of true age a being aged to be that age or some other age a^{\prime}.
$\tilde{P}_{a, l} \quad$ takes account of the timing of the age-length sampling (from $P_{a+1 / 2, l}$ for commercial samples and survey samples if $t^{\text {surv }}$ is greater than 6 and from $P_{a, l}$ otherwise).

Note: All aged animals less than 21 cm in length are assumed to be juveniles, i.e. of unknown gender. Outliers, defined as the data points lying outside the mean ± 3 s.d. for each age (mean and s.d. calculated across all years and surveys) have been discarded.

The age-length information is grouped into 2 cm length classes.
Age-reading error matrices have been computed for each reader and for each species. When multiple readers age the same fish, these data are considered to be independent information in the model fitting.

3.6 Stock-recruitment function residuals

The stock-recruitment residuals are assumed to be log-normally distributed. Thus, the contribution of the recruitment residuals to the negative of the log-likelihood function is given by the penalty function:
$-\operatorname{InL}{ }^{S R}=\sum_{s}\left[\sum_{y=y 1}^{y 2}{S_{s y}}^{2} / 2 \sigma_{R}^{2}\right]$
where
$\zeta_{s y}$ is the recruitment residual for species s, and year y, which is assumed to be log-normally distributed with standard deviation σ_{R} and which is estimated for year $y 1$ to $y 2$ (see equation 4) (estimating the stockrecruitment residuals is made possible by the availability of catch-at-age data, which give some indication of the age-structure of the population); and
$\sigma_{R} \quad$ is the standard deviation of the log-residuals, which is input.
The stock-recruitment residuals are estimated for years 1985 to 2017, with recruitment for other years being set deterministically (i.e. exactly as given by the estimated stock-recruitment curve) as there is insufficient catch-at-age information to allow reliable residual estimation for earlier years. A limit on the recent recruitment fluctuations is set by having the σ_{R} (which measures the extent of variability in recruitment) decreasing linearly from 0.45 in 2013 to 0.1 in 2017 (or more generally over the last five years of the assessment), thereby effectively forcing recruitment over the last years to lie closer to the stock-recruitment relationship curve.

4. Model parameters

4.1 Estimable parameters

The primary parameters estimated are the species-specific female virgin spawning biomass $\left(K_{s}^{Q_{s p}}\right)$ and steepness (h_{s}) and γ (for the modified Ricker curve used in the Reference Case, see equation 4 b) of the stock-recruitment relationship. The standard deviations σ^{i} for the CPUE series residuals (the species-combined as well as the GLM-standardised series) as well as the additional variance $\left(\sigma_{A}^{i}\right)^{2}$ for each species and survey q 's are treated as estimable parameters in the minimisation process. Similarly, in the case of the species-combined CPUE, $q_{C}^{W C, z 1}, q_{C}^{W C, z 2}, q_{P}^{W C}, \rho$ and γ_{C} are directly estimated in the fitting procedure.

The species- and gender-specific von Bertalanffy growth curve parameters (l_{∞}, κ and t_{0}) are estimated directly in the model fitting process, as well as the θ_{0}, θ_{1} and θ_{14}, values used to compute the standard deviation of the length-at-age a.

Stock-recruitment residuals $\varsigma_{s y}$ are estimable parameters in the model fitting process. They are estimated separately for each species from 1985 to the present, and set to zero pre-1985 because there are no catch-at-length data for that period to provide the information necessary to inform estimation.

All the estimable parameters apart from the selectivity parameters are listed in Table 2, with the bounds enforced and their values as estimated for the Reference Case.

The following parameters are also estimated in the model fits undertaken (if not specifically indicated as fixed).

4.1.1 Natural mortality:

Natural mortality ($M_{s a}$) is assumed to be age-specific and is calculated using the following functional form (the selection of the specific form here is based on convenience and is somewhat arbitrary):
$M_{a}=\left\{\begin{array}{lll}M_{2} & \text { for } & a \leq 1 \\ \alpha^{M}+\frac{\beta^{M}}{a+1} & \text { for } & 2 \leq a \leq 5 \\ M_{5} & \text { for } & a>5\end{array}\right.$
M_{0} and M_{1} are set equal to $M_{2}\left(=\alpha^{M}+\beta^{M} / 3\right)$ as there are no data (hake of ages younger than 2 are rare in catch and survey data) which would allow independent estimation of M_{0} and M_{1}.

When M values are estimated in the fit, a penalty is added to the total $-\operatorname{lnL}$ so that $M_{2} \geq M_{5}$:

$$
\begin{equation*}
\text { pen }^{M}=\left(M_{5}-M_{2}\right)^{2} / 0.01^{2} \quad \text { if } M_{2}<M_{5} \tag{44}
\end{equation*}
$$

For the Reference Case, the following values are fixed: $M_{2}=0.75$ and $M_{5}=0.375$ for both species and genders.

4.1.2 Survey fishing selectivity-at-length:

The survey selectivities are all modelled by a double normal shape as recommended by the International Panel (Smith et al., 2013). Thus the selectivity-at-length for each species, sex, gear and survey is estimated by the following functional form:
$S_{l}= \begin{cases}\exp \left(-\frac{\left(l-l_{\text {max }}\right)^{2}}{2 \sigma_{L e f t}^{2}}\right) & \text { for } l \leq l_{\text {max }} \\ \exp \left(-\frac{\left(l-l_{\text {max }}\right)^{2}}{2 \sigma_{R i g t}^{2}}\right) & \text { for } l>l_{\text {max }}\end{cases}$
where $\sigma_{\text {Left }}, \sigma_{\text {Right }}$ and $l_{\max }$ are estimable parameters.
For the surveys, different selectivities can potentially be estimated for all of the following "effects":
a. Species (M. paradoxus/M. capensis),
b. Coasts (West coast/South coast),
c. Seasons (Summer/Winter/Spring/Autumn),
d. Gear (Africana old/new gear), and
e. Gender (males/females).

Note that selectivity is always 1 for $l=l_{\max }$ except for females M. paradoxus on the South Coast, for which the maximum female selectivity is always set at an estimable proportion of the maximum of 1 for the males.

To select an appropriate combination, several runs have been carried out, estimating the selectivities including one or more different effects. The final run selected involves maintaining the same parameters for each sex and gear across other effects, except for estimating a fixed multiplicative change to the $\sigma_{\text {Right }}$ parameter if sex is female $\left(\Delta_{\text {fem }}\right)$ and also if new gear is used ($\Delta_{\text {gear }}$). This multiplicative change is species and coast dependent, i.e.:
$\sigma_{\text {Right }, f, g}=\left\{\begin{array}{cc}\sigma_{\text {Right }} & \text { if } f=\text { old gear, and } g=\text { males } \\ \sigma_{\text {Right }} \Delta_{\text {fem }} & \text { if } f=\text { old gear, and } g=\text { females } \\ \sigma_{\text {Right }} \Delta_{\text {gear }} & \text { if } f=\text { new gear, and } g=\text { males } \\ \sigma_{\text {Right }} \Delta_{\text {fem }} \Delta_{\text {gear }} & \text { if } f=\text { new gear, and } g=\text { females }\end{array}\right.$
with $\sigma_{\text {Right }}, \Delta_{\mathrm{fem}}$ and $\Delta_{\text {gear }}$ estimated separately for each for each species and coast combination.
Selectivities-at-length are converted to selectivities-at-age using the begin-year age-length matrix for the summer and autumn surveys, and the mid-year age-length matrix for winter and spring surveys.

4.1.3 Commercial fishing selectivity-at-length:

As for the survey selectivities, the commercial fishing selectivity-at-length for each species and fleet, $S_{s f l}$, is estimated in terms of a double normal curve.

Periods of fixed and changing selectivity have been assumed for the offshore trawl fleet to take account of the change in the selectivity at low ages over time in the commercial catches, likely due to the phasing out of the (illegal) use of net liners to enhance catch rates.

Two selectivity periods are also assumed for the longline fleet.
On the South Coast, for M. paradoxus, the female offshore trawl selectivity (only the trawl fleet is assumed to catch M. paradoxus on the South Coast) is scaled down by a factor taken as the average of those estimated for the South Coast spring and autumn surveys. Although there is no gender information for the commercial catches, the South Coast spring and autumn surveys catch a much higher proportion of male M. paradoxus than female (ratios of about 7:1 and 3.5:1 for spring and autumn respectively). This is assumed to reflect a difference in distribution of the two genders which would therefore affect the commercial fleet similarly.

4.2 Input parameters and other choice for application to hake

4.2.1 Age-at-maturity:

The proportion of fish of species s, gender g and length l that are mature is assumed to follow a logistic curve with the parameter values given in Table 3:

$$
\begin{equation*}
f_{s l}^{g}=\left(1+e^{\frac{l_{0}^{5 s^{8}-l}}{s^{s, s}}}\right)^{-1} \tag{45}
\end{equation*}
$$

Maturity-at-length is then converted to maturity-at-age as follows:

$$
\begin{equation*}
f_{s a}^{g}=\sum_{l} f_{s l}^{g} P_{a, l}^{g} \tag{46}
\end{equation*}
$$

with maturity at age 0 set to 0 .

4.2.2 Weight-at-length:

The weight-at-length for each species and gender is calculated from the mass-at-length function, with values of the parameters for this function listed in Table 4:

$$
\begin{equation*}
w_{l}=\alpha l^{\beta} \tag{47}
\end{equation*}
$$

References

Fairweather T. 2017. Updated commercial catch at length (CAL) for hake from samples collected at processing facilities 2005-2016. Unpublished report. FISHERIES/2017/SEPT/SWG-DEM/38.

Punt AE and Kennedy RB. 1997. Population modeling of Tasmanian rock lobster, Jasus edwardsii, resources. Mar. Freshw. Res. 48, 967-980.

Rademeyer RA and Butterworth DS. 2016. Corrected Reference Case for the South African resource. FISHERIES/2016/NOV/SWG-DEM/83.

Singh L, Melo Y and Glazer J. 2013. Merluccius capensis and M. paradoxus length-at-50\% maturity based on histological analyses of gonads from surveys. Unpublished report. FISHERIES/2011/JUL/SWG-DEM/33.

Singh L. 2013. Length weight relationship of both hake species. Unpublished report. FISHERIES/2013/OCT/SWGDEM/58.

Somhlaba S and Leslie RW. 2014. Catch-at-length information and proportions of females for Merluccius paradoxus and M. capensis off the South African coast from 2000 to 2010 . Unpublished report. FISHERIES/2014/AUG/SWG-DEM/38.

Table 2: Parameters estimated in the model fitting procedure, excluding selectivity parameters, with bounds enforced and values as estimated for the Reference Case.

Estimable parameter	Bounds enforced		Reference Case estimates			
			M. paradoxus		M. capensis	
$\ln \left(K^{\circ}{ }_{\mathrm{s}}\right)$	$(3.5 ; 9)$		6.304		5.229	
$h_{\text {s }}$	(0.2; 1.5)		1.249		1.500	
γ_{s}	$(0 ; 1)$		0.316		0.344	
$\zeta_{s, 1985-2016}$	$(-5 ; 5)$					
$\left(\sigma_{\mathrm{A}, \mathrm{~s}}\right)^{2}$	($0 ; 0.5$)		0.176		0.133	
$\sigma_{\text {ICSEAF CPUE }}-\mathrm{WC}$	$(0.25 ; 1)$	0.250				
$\sigma_{\text {ICSEAF CPUE }}-$ SC	$(0.25 ; 1)$	0.250				
$\sigma_{\text {GLM CPUE }}-$ WC	$(0.15 ; 1)$		0.150		0.185	
$\sigma_{\text {GLM CPUE }}-$ SC	$(0.15 ; 1)$		0.162		0.268	
ICSEAF CPUE						
$q_{C}^{W_{C} ; 1}$	$(0 ; 10)$				0.365	
$q_{C}^{W C ;} 2$	$(0 ; 10)$				0.199	
$q_{P}^{\text {FC }}$	$(0 ; 10)$		0.022			
r	$(0 ; 10)$	0.145				
γ_{c}	$(0 ; 1)$				0.097	
Survey $\ln (q)$			Old gear	New gear	Old gear	New gear
WC summer	$(-5 ; 2)$		0.365	0.246	-0.171	-0.568
WC winter	$(-5 ; 2)$		0.092		-0.088	
SC spring	$(-5 ; 2)$		-0.085	-0.186	-0.110	-0.513
SC autumn	$(-5 ; 2)$		-0.571	-0.709	0.080	-0.332
Age-length dbn			Males	Females	Males	Females
θ_{0}	$(0.1 ; 100)$		2.236	2.291	3.162	2.721
θ_{1}	$(0.1 ; 100)$		4.041	4.770	3.861	4.942
θ_{14}	$(0.1 ; 100)$		12.830	6.256	13.416	7.042
L_{5}	$(30 ; 60)$		47.097	53.375	51.681	53.858
$\ln (\kappa)$	$(-20 ; 2)$		-18.404	-19.718	-18.614	-19.710
t_{0}	$(-10 ; 0)$		-1.737	-1.061	-0.799	-0.744

Table 3: Female maturity-at-length ogive (equation 44) parameter estimates (from Singh et al. 2013).

	$l_{50}(\mathrm{~cm})$	$\Delta(\mathrm{cm})$
M. paradoxus	41.526	2.979
M. capensis	53.825	10.144

Table 4: Length-weight relationship estimates (from Singh 2013).

	$\alpha\left(\mathrm{gm} / \mathrm{cm}^{\beta}\right)$	β
M. paradoxus:		
Males	0.007750	2.977
Females	0.005700	3.071
M. capensis:		
Males	0.006750	3.044
Females	0.005950	3.075

Appendix A: Reference Case data

Table App.A.1a: Species-disaggregated catches (in thousand tons) by fleet of South African hake from the south and west coasts for the period 1917-1978.

	M. paradoxus Offshore	M. capensis Offshore
	WC	WC
1917	-	1.000
1918	-	1.100
1919	-	1.900
1920	-	0.000
1921	-	1.300
1922	-	1.000
1923	-	2.500
1924	-	1.500
1925	-	1.900
1926	-	1.400
1927	-	0.800
1928	-	2.600
1929	-	3.800
1930	-	4.400
1931	-	2.800
1932	-	14.300
1933	-	11.100
1934	-	13.800
1935	-	15.000
1936	-	17.700
1937	-	20.200
1938	-	21.100
1939	-	20.000
1940	-	28.600
1941	-	30.600
1942	0.001	34.499
1943	0.001	37.899
1944	0.002	34.098
1945	0.004	29.196
1946	0.011	40.389
1947	0.021	41.379
	-	
	-	

	M. paradoxus Offshore		M. capensis		
			Offshore		Inshore
	WC	SC	WC	SC	SC
1948	0.059	-	58.741	-	-
1949	0.113	-	57.287	-	-
1950	0.275	-	71.725	-	-
1951	0.662	-	88.838	-	-
1952	1.268	-	87.532	-	-
1953	2.558	-	90.942	-	-
1954	5.438	-	99.962	-	-
1955	10.924	-	104.476	-	-
1956	19.581	-	98.619	-	-
1957	34.052	-	92.348	-	-
1958	51.895	-	78.805	-	-
1959	76.609	-	69.391	-	-
1960	100.490	-	59.410	-	1.000
1961	104.009	-	44.691	-	1.308
1962	109.596	-	38.004	-	1.615
1963	129.966	-	39.534	-	1.923
1964	126.567	-	35.733	-	2.231
1965	159.704	-	43.296	-	2.538
1966	154.109	-	40.891	-	2.846
1967	139.973	7.086	36.727	7.100	3.154
1968	113.890	13.958	29.710	13.950	3.462
1969	131.023	18.982	34.077	18.948	3.769
1970	113.124	11.876	29.376	11.847	4.077
1971	160.384	15.078	41.616	15.037	4.385
1972	193.694	23.382	50.239	23.314	4.692
1973	125.292	36.232	32.490	36.124	5.000
1974	97.674	45.496	25.326	45.357	10.056
1975	71.165	33.783	18.452	33.680	6.372
1976	114.268	26.005	29.626	25.925	5.740
1977	81.260	18.515	21.068	18.457	3.500

Table App.A.1b: Species-disaggregated catches (in thousand tons) by fleet of South African hake from the south and west coasts for the period 1978-present. For 2017, the catches are taken as the 2017 TAC with the same proportion by species and fleet as in 2016.

	M. paradoxus				M. capensis					
	Offshore		Longline		Offshore		Inshore	Longline		Handline
	WC	SC	WC	SC	WC	SC	SC	WC	SC	SC
1978	107.701	4.937	-	-	19.812	2.648	4.931	-	-	-
1979	101.890	3.575	-	-	31.633	3.345	6.093	-	-	-
1980	105.483	3.676	-	-	28.045	2.784	9.121	-	-	-
1981	95.330	1.767	-	-	25.601	3.719	9.400	-	-	-
1982	88.933	5.057	-	-	24.417	6.300	8.089	-	-	-
1983	74.173	7.034	0.126	-	20.260	5.482	7.672	0.104	-	-
1984	86.045	5.718	0.200	0.005	25.210	5.217	9.035	0.166	0.011	-
1985	98.283	12.694	0.638	0.091	26.788	7.322	9.203	0.529	0.201	0.065
1986	107.907	11.539	0.753	0.094	25.898	4.427	8.724	0.625	0.208	0.084
1987	96.162	10.536	1.952	0.110	21.363	5.148	8.607	1.619	0.243	0.096
1988	83.606	8.664	2.833	0.103	22.976	5.852	8.417	2.350	0.228	0.071
1989	85.298	9.039	0.158	0.010	21.961	9.873	10.038	0.132	0.022	0.137
1990	84.969	13.622	0.211	-	18.668	9.169	10.012	0.175	-	0.348
1991	89.371	15.955	-	0.932	17.079	6.119	8.206	-	2.068	1.270
1992	86.777	22.368	-	0.466	16.510	4.094	9.252	-	1.034	1.099
1993	105.114	12.472	-	-	12.951	1.789	8.870	-	-	0.278
1994	106.287	8.588	0.882	0.194	17.580	2.464	9.569	0.732	0.432	0.449
1995	102.877	5.395	0.523	0.202	18.020	1.755	10.630	0.434	0.448	0.756
1996	110.460	11.080	1.308	0.568	18.715	2.209	11.062	1.086	1.260	1.515
1997	103.035	13.651	1.410	0.582	14.119	2.185	8.834	1.170	1.290	1.404
1998	113.083	11.703	0.505	0.457	14.570	2.450	8.283	0.419	1.014	1.738
1999	89.147	13.435	1.532	1.288	14.614	1.912	8.595	1.272	2.856	2.749
2000	97.417	9.920	2.706	3.105	20.285	3.610	10.906	2.000	1.977	5.500
2001	101.990	11.016	2.045	0.370	15.606	5.141	11.836	1.750	1.347	7.300
2002	91.720	15.445	4.469	1.585	13.211	3.140	9.581	2.391	2.546	3.500
2003	95.143	21.107	3.305	1.252	10.233	3.926	9.883	2.526	3.078	3.000
2004	86.916	30.746	2.855	1.196	11.315	4.024	10.004	2.297	2.731	1.600
2005	87.540	25.051	3.091	0.472	7.727	4.195	7.881	2.773	3.270	0.700
2006	83.840	22.133	3.241	0.485	9.657	2.494	5.524	2.520	3.227	0.400
2007	96.332	15.825	2.512	3.021	12.537	1.420	6.350	2.522	2.522	0.400
2008	88.290	14.940	2.255	0.809	11.085	2.567	5.496	1.937	1.893	0.231
2009	69.716	13.269	2.410	1.069	10.783	2.431	5.639	2.828	2.520	0.265
2010	70.156	17.863	2.045	0.370	9.738	1.649	5.472	1.750	1.347	0.275
2011	76.744	20.447	2.522	0.140	15.505	1.543	6.013	3.521	3.047	0.186
2012	82.361	19.350	4.358	0.306	11.978	1.776	3.223	2.570	1.737	0.008
2013	75.403	32.693	6.056	0.060	7.699	0.642	2.920	2.606	1.308	0.000
2014	75.071	46.779	6.879	0.008	7.852	0.662	2.965	2.123	0.315	0.002
2015	80.214	35.304	5.223	0.021	10.035	0.476	3.077	2.935	0.064	0.001
2016	95.308	20.840	2.806	0.001	11.730	0.653	3.973	4.360	0.002	0.001
2017	95.616	20.907	2.815	0.001	11.768	0.655	3.986	4.374	0.002	0.001

Table App.A.2: GLM standardized CPUE data for M. paradoxus and M. capensis (Glazer, pers. comm.).

	GLM CPUE $\left(\mathrm{kg} \mathrm{min}^{-1}\right)$			
	M. paradoxus			

Table App.A.3: Survey abundance estimates and associated standard errors in thousand tons for M. paradoxus for the depth range $0-500 \mathrm{~m}$ for the South Coast and for the West Coast (Fairweather, pers comm.). Values in bold are for the surveys conducted by the Africana with the new gear, while underlined values are for the surveys conducted by the Andromeda and in 2016 by the Compass Challenger.

Year	West coast				South coast			
	Summer		Winter		Spring (Sept)		Autumn (Apr/May)	
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)
1985	168.989	(37.765)	290.281	(63.295)	-	-	-	-
1986	202.334	(37.745)	147.378	(21.667)	11.280	(3.111)	-	-
1987	284.434	(54.165)	180.158	(39.047)	16.381	(3.033)	-	-
1988	138.534	(20.303)	252.121	(71.246)	-	-	28.293	(8.673)
1989	-	-	434.092	(142.716)	-	-	-	-
1990	307.615	(87.841)	205.704	(43.607)	-	-	-	-
1991	331.177	(81.633)	-	-	-	-	27.570	(8.153)
1992	225.755	(33.711)	-	-	-	-	25.036	(6.650)
1993	340.079	(51.427)	-	-	-	-	162.375	(81.691)
1994	333.499	(56.259)	-	-	-	-	108.179	(38.369)
1995	317.104	(76.709)	-	-	-	-	70.890	(39.330)
1996	474.270	(92.744)	-	-	-	-	68.859	(19.929)
1997	543.615	(96.043)	-	-	-	-	121.707	(51.507)
1998	-	-	-	-	-	-	-	-
1999	542.830	(110.541)	-	-	-	-	263.256	(59.439)
2000	-	-	-	-	-	-	-	-
2001	-	-	-	-	16.668	(7.159)	-	-
2002	251.820	(32.690)	-	-	-	-	-	-
2003	386.321	(63.565)	-	-	98.434	(42.249)	185.345	(82.188)
2004	271.540	(55.710)	-	-	70.001	(22.156)	39.822	(22.153)
2005	296.065	(42.409)	-	-	-	-	26.691	(6.017)
2006	316.247	(57.332)	-	-	68.507	(18.283)	34.868	(5.843)
2007	407.377	(77.222)	-	-	66.267	(21.966)	102.195	(53.688)
2008	238.143	(37.018)	-	-	25.661	(8.324)	33.034	(9.340)
2009	310.760	(27.768)	-	-	-	-	45.030	(15.551)
2010	576.848	(88.202)	-	-	-	-	46.938	(12.160)
2011	380.185	(128.013)	-	-	-	-	21.054	(6.531)
2012	405.865	(59.099)	-	-	-	-	-	-
2013	136.260	(25.116)	-	-	-	-	-	-
2014	$\underline{269.482}$	(37.492)	-	-	-	-	$\underline{62.925}$	(24.802)
2015	$\underline{207.583}$	(24.057)	-	-	-	-	$\underline{111.411}$	(51.852)
2016	$\underline{312.876}$	(33.250)	-	-	-	-	94.177	(51.731)
2017	319.024	(58.766)	-	-	-	-	-	-

Table App.A.4: Survey abundance estimates and associated standard errors in thousand tons for M. capensis for the depth range $0-500 \mathrm{~m}$ for the South Coast and for the West Coast (Fairweather, pers. comm.). Values in bold are for the surveys conducted by the Africana with the new gear, while underlined values are for the surveys conducted by the Andromeda and in 2016 by the Compass Challenger .

Year	West coast				South coast			
	Summer		Winter		Spring (Sept)		Autumn (Apr/May)	
	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)	Biomass	(s.e.)
1985	102.929	(18.888)	159.198	(18.982)	-	-	-	-
1986	113.154	(23.474)	115.218	(19.733)	96.768	(10.737)	-	-
1987	75.438	(9.709)	83.050	(10.306)	137.008	(13.057)	-	-
1988	66.365	(9.930)	48.046	(9.574)	-	-	154.548	(23.984)
1989	-	-	294.740	(67.495)	-	-	-	-
1990	400.142	(97.102)	156.337	(22.507)	-	-	-	-
1991	67.565	(9.656)	-	-	-	-	276.607	(25.274)
1992	95.401	(11.892)	-	-	-	-	124.495	(13.600)
1993	93.613	(14.390)	-	-	-	-	144.551	(12.379)
1994	124.497	(37.845)	-	-	-	-	153.790	(20.310)
1995	193.292	(24.270)	-	-	-	-	222.464	(31.245)
1996	87.969	(9.866)	-	-	-	-	222.176	(23.144)
1997	252.606	(42.721)	-	-	-	-	163.163	(17.274)
1998	-	-	-	-	-	-	-	-
1999	188.624	(31.362)	-	-	-	-	171.946	(13.330)
2000	-	-	-	-	-	-	-	-
2001	-	-	-	-	117.590	(20.093)	-	-
2002	105.093	(16.130)	-	-	-	(-	-
2003	73.020	(12.518)	-	-	73.604	(9.142)	117.538	(17.192)
2004	194.294	(30.714)	-	-	96.933	(13.936)	92.796	(11.318)
2005	63.363	(11.498)	-	-	-	-	68.672	(5.302)
2006	73.655	(17.255)	-	-	92.831	(8.998)	116.298	(11.931)
2007	73.230	(9.306)	-	-	67.937	(6.553)	65.935	(5.303)
2008	52.577	(7.069)	-	-	87.836	(9.723)	102.169	(9.681)
2009	140.437	(26.486)	-	-	-	-	111.191	(10.832)
2010	162.402	(34.891)	-	-	-	-	170.261	(33.235)
2011	89.095	(23.574)	-	-	-	-	105.424	(10.688)
2012	84.746	(8.331)	-	-	-	-	-	-
2013	30.383	(4.575)	-	-	-	-	-	-
2014	$\underline{219.756}$	(60.342)	-	-	-	-	63.389	(6.415)
2015	$\underline{65.086}$	(9.178)	-	-	-	-	76.059	(6.873)
2016	$\underline{115.058}$	(30.400)	-	-	-	-	83.197	(6.600)
2017	69.289	(14.486)	-	-	-	-	-	-

Table App.A.5a: West coast commercial offshore trawl, species combined, sex-aggregated, catch-at-length data given as proportions (Fairweather, 2017). Here and below, the blue bars represent the sizes of the proportions, with the shortest bar representing the lowest proportion in the matrix and the longest bar representing the highest proportion.

Nith	.	.)	1	2				3	,	a)	4	,	47	,		5)	55	3	5	6.	\%	65	6.	69	71	,	75	77	79	
1911	10008	[10028	Ficos	D.119	Dowes	la,159	la:20	lacss	boces	0.087	50.031	F10.23	la019	O.0.3	0011	0.009	0.007	a00s	beos	0.004	0.003	0.003	a,002	0.002	2001	0.01	0.001	. 0001	0.000	0000	500	10,001
$1{ }^{1}$	Ianas	laces	Ti.076	कh920	Coiss	Wi66	1atis	[1093	D.069	D. 0 atf	Fo.028	tans	lacts	O.012	D0.012	0.038	0.031	Cons	2004	e.003	0.003	o.as	0.002	0001	0.00	0.00	e.as	6.000	0.000	a000	a,o	10,000
1593	\$0000	Iacos	F0.018	lo.as	0,088	T6. 104	0.226	Ea:2y	Q.120	[0.037	50.0s5	to.04	Fa.c34	Io.028	10.024	I0.020	10.015	10.012	0.00	10.007	0.005	0.0	0,003	0.003	0.00	0.00	0.0	0.00	10.001	0.001	0.00	
1594	10000	10003	\|0.009	10.007	10.13	[1,27	-139	lail1	Dos2	D. 082	Fibes	Ta.oss	19029	fioces	Lu.me	F0.019	10.014	La019	10009	IV.008	[0,0]	0.000	b.00s	0004	10.003	0.002	0.002	0.001	a.ons	0.01	0.000	
1 109	10.000	\| 1000	I 1.001	1 D .004	Io.015	Ea, 04	2615	$\boxed{6} \mathbf{1} 46$	dias	IV129	Li.0.06	[6.072	Reos?	Elusis	In,089	10.025	Io.018	[0.017	Io.014	10.01i	In.031	(0.009	10.007	ao	a.cos	a.ces	0.004	0.009	a.002	a00	Q.001	10.001
1986	\$0.000	1as00	I0.002	1.008	10.029	Bo.oso	Le.094	$\underline{0.136}$	Q. 197	6.134	E.111	-0.05	W.oso	Le.o3	n. 026	I0.039	L0.015	lo.013	la.00	a.cos	10.006	10.006	0.0	a	oo	0.co	0.00	0.003	0.0	a	0.001	
15	10.00	lame	Y0.00	E0.03	\%or	ER119	[61so	[013)	Wesp	-0.12		lames	,	Eno30	,	To.026	lo.03	lam	(00	00	10.0	0.0	a,	ao	oc	0.	0.0	0.00t	an	ao	0.003	
13	10.00	1000	10.0	In.a	To.to	Tol	(615)	cery	T	To.	3.050	03a	02x	cos	0.0.	10.03	10.022	a.u1	a.a	ac	0.0	0.b	0.0.	ao	a.	a.co	0.0		0.0		0.000	
1sa9	10000	! 1.003	[1.0.4	Doss	[0.12	Ci.iss	-151	Da, 22	Doss	D0.05	lo. 045	2033	ta025	Iace	[1.01	10.013	0.01	don	a,	0.0.	10.0	0.0.	0.0	0.0	10.0	[10.0	0.0	0.00	0.0.	0.00	0.00	
1990	10000	lacos	Iocos	10.03	Ib.ase	Ques	20,31	Q 101	We37	Dins	10.081	la.oss	Coun	Iucso	(0.023	[0.010	10.011	laso	0.00	0.000	0,004	0.009	1000	0.00	10.00	10.00	0.02	0.00	900	0.00	0.000	I0.000
1001	10.000	Iacos	0.006	n.022	[6.049	B.07	Leos	Ticos	Weas	П1\% ся	16.075	lious	W603	bos?	Th.ost	Ho.as	Lo.034	Pa019	10014	Io.054	10.011	0.012	0.011	cos	0.00	Iom	0.as	0.004	2.003	aom	0.001	
1992	0.000	! 10.002	To.010	b. 04	6imm	612	Q124	E. 107	D082	0.058	E. 053	P.004	Tu.036	tuosi	To.032	L0.026	T0.023	la.023	F0.017	10.015	10.011	0.059	0.007	0.00	acos	0.00	0.003	0.00	0.002	$\alpha .00$	0.00	
1993	0.000	\|acos	10.003	I0.015	Lo.u4	La,	Coios	bices	D0.01	Lous	Tivors	loves	Fioss	Dicos	Dios6	Do.ess	Di.038	lo.034	L0023	10.019	10.012	0.009	a.0	ad	0.0	± 00	0.0	0.00	a,001	0.001	a,0	
1008	0.000	10000	[0.001	lu.ces	Io.02?	Lem	¢ 118	[6.91	To.colo	Inato	隹.0.9	as)	lo.ay	Lo42	D.040	[0.046	b. 046	T.0at	Fo.02	lo.001	[0.012	0.0	a,	a.	a,	a,	0.00	0.0	e.	ao	0.001	
1995	0.000	Iaco3	Ioote	D.os	D.	=	Q2122	Etis	Win	10.	50.085	E0.0ss	La032	lues	23	[0.013	l0.016	La.0s	a,	0.0	10.a	0.	0.0	a	a,	0.8	0.00	0.0	0.	0.000	0.000	
1996	0.000	Iam	10	b	[0.037	Dos	Qute	Wiz1	Diss	Ia	1	Fenem	lavar	(0.031	-	[0,019	o.	lan	aco	0.00	0.0.	0.0	a,	$\alpha 0$	a0	0.0	0.00	0.0	90	200	0.000	\|0.001
1997	10.00	lace	${ }^{+0} 0$	mo	To.os	Dous	Wiso	Dits	T.11	Diom	10.un	. 1052	lavss	(locus	Incm	10.034	lo.031	lad	ad	10.0	10.0	0.0	a,	an	0.0	0.00	0,0	aso	do	0.00	a.000	10.001
1998	10.000	\|a.002	I0.012	Ln.02	I0.045	10.073	E/12	(1).19	0.120	Tilion	Li.osd	B.0s0	lioas	B.oas	In. 225	[0.017	10.015	10.016	laos	l0.0.5	L0.012	0.01	0.0	aon	$1 \mathrm{l}, 0$	Ina	0.00	0,00	0.00	0.00	a,	
1999	10000	Iacoz	I0.011	0.026	\$0.044	E007	[176	-0.17	0.115	T0,103	E.0s4	T0.0s\%	Ta000	Inosi	0.025	[0.038	Io.017	la018	lase	lo.0.3	Incos	0.012	1.010	0.00	acos	1000	0.000	0.00	0.001	0.0	0.0	0 0,
coos	10000	Ia000	\|10.006	Doss	Wirz	W\%	atso	Fisi6	D0.064	Li.042	La.026	la, 0	IV003	Inost	10.0.22	E0.036	-0.012	0.012	$\alpha 011$	0.0.0	10.0 Ca	0.007	0.005	a,	0.501	0.00	0,002	0,00	a,09	a,o	0.0	10.001
2006	10.000	\| 1001	F\|0.008	Th.038	V0.075	6.116	ates	V034	0.137	Ilions	L0.04t	K0.031	lo.024	(0.002	0.019	[0.017	10.015	0.014	(0.12	0.010	10.006	0.056	a.005	aod	0.00	0.60	0.002	o.os	0.00	0.0	0.00	0.001
	10000	Iacoo	I0.002	3	10.062	D013	Eas	Di67	0.34	Di.asg	to.04e	La028	la.022	Lu028	10.920	I0.019	la,	0.014	10013	0.010	10.007	0.00	a,	a,	ao	0.00	0.00	a,	a,	,	0.00	
200	Ionos	10.000	1 n 000	uos	[0.023	Cous	E111	lass	$\underline{0129}$	Tiso)	Eines	Fobes	boso	dean	Lo.0.9	[0.026	Eloura	louz	loo	lots	10.012	o.n	0,	a	ac	0.	0.	40	a,	d	a.000	Ioms
200	0.000	lacos	0.008	0.024	0.050	W.ass	Wion	Q. 223	¢		0.047		1.047	¢	D. 03	0.039	F.a37	lo.032	.	lo.s	0.a	0.01	. 0	a	-	,	, 0.0	. 0.02	,	-	-	10.001
2010	\$0000	\|a002	0002	0.00	Io.038	le 067	© 131	${ }^{10.137}$	0.12	[0.090	Fi.ma	Fboes	luon	Tosas	\$0.047	T0.045	E0.032	lan31	lo.01	la,	[0,012	0.01	con	and	a,	0.0	,	, 0.01	a,om	,	,	
2	10000	lacos	\|0.002	0.002	10.034	la, uso	Qint	Faizs	W.11\%	Di.12	bas?	Te.0eo	Loesz	luast	W0.041	To.me	\#0.024	Lan3	la 019	10.96	10.012	0.012	a,	0.0	a.cos	0.co	o.aca	0.003	a.00	2001	acon	
2012	10000	Iacos	10.c07	0.015	Lo.02a	FS.050	[®117	10.006	D007	Ti.ass	T. 1.067	T. 063	T0.061	Fooso	[0.04]	To. 041	F0.033	la.028	[0.018	10.015	0.011	0.000	10.007	0.005	0.004	0.003	0.003	0.002	0.001	0.001	0.001	0.001
2033	ta000	I.003	! 1.005		T0.025	10.060	D009	-1099	D087	T0,075	Finocs	Plows	laoss	Ebocs	lums	Tomsa	E.048	Elome	Fa02s	10.036	[0,015	0.013	0.007	0.005	a.0.	0.003	0.002	0.002	a,001	0.001	0.001	
2016	10.000	! acos	! 10.008		V.0\%	Fixas	10.31	-6.24	D. 206	Fi.050	F0.05s	Jowe	[103)	those	D.as4	I0.041	Fano	Loan	Iavis	10.016	10.anz	0.068	10.097	avos	acay	a.coz	0.032	0.007	anor	0.001	a.001	10.007
205	10.002	Iacos	E0.01	In.aзз	T6.	10.t6s	O13s	6. 02	Q, 100	Dioss	so	la.0.8	027	laca	In.	[0.a2s	lo.020	l0.018	0.013	a00s	10.004	0.0	10.002	Ia.on	a,	0.001	0.0	0.000	0.000	$\alpha 000$	$a \infty$	010.000

Table App.A.5b: South coast commercial offshore trawl, species combined, sex-aggregated, catch-at-length data (Fairweather, 2017).

Table App．A．5c：South coast commercial inshore trawl，M．capensis，sex－aggregated，catch－at－length data（Fairweather，2017）．

south coast inshore trawl，M．capensis
Lenth
19

enth	19	21	23	25												49		53					田								79	
131	0000	0000	0000	0.081	0.003	0.014	［0．3 ${ }^{\text {a }}$	1000	W301	0.117	0.129	lay 03	be94	lions	1000	L6．049	15．030	La031	If．021	0.017	0.015	0.011	a．003	0005	a．cot	0.503	0008	0.001	0.001	a00	0.001	00
1 1ata	atoo	0.000	0.000	n．001	10．006	la．as	［0ens	［673	D． 144	0．12s	－1．112	lobea	licnt	lo．es2	D0．038	Fo．aza	F0．023	fauts	tain	a，010	10．007	Io．006	7．00s	avas	0.002	a．coz	0.001	la， 004	a．000	a000	00	10.000
1593	10．000	laceo	0.000	Ј．000	10．000	10．009	F0．018	D0040	Dosis	D．034	Fe．pos	［0．097	Eatoz	Fios	［0．096	To．tso	F．061	to．0s	Flo32	E0．022	F0．015	S0．012	10．00	0.005	2004	\％． 009	0.00	10.002	0.0	0.001	0.000	
1994	lavos	10000	0.000	0.000	0．001	10.003	$1 \mathrm{l}, 017$	locso	Tose	［0114	10，132	18139	$\underline{0121}$	Dixas	Fi．08	T0．043	To．0	Lauz	lauzz	10．018	En．016	10．0	lo．	00	a．004	0.0	0．0）	0，0	Q，	0000	0.000	
1 mas	10.000	｜a000	a．cona	0.00	10．000	Ianoz	lanos	losi6	Dos		to．05a	İons	6100	110.4	Tin	Biom	Exan	Ta	Buas	Too	Tuas	\％o．0	－	la，	0.0	a， $0^{\text {a }}$	0.0	10.0	a．D	a00	0.000	
1986	0.000	｜ 0.00	a．000	2．00	0．001	10.005	\＄0．019	la 04	lace	Di．100	10．056	E．090				to．us		，		dor	，			lao	lam	a．co		lo．o				
1sa	0.000	a000	0.00	0.00	0，000	0.003	lano	Elues	D001	－0．999	Weno	［al30	0113	Tacos	boves	T0．0ss	0．0．	Hom	Lo．as	O．02	Dos	O．a	la，	lao	an	0.	0.00	0．0．	a．	ason	amen	10，001
1 sanh	0．000	10000	a．coo	n． 005	10．006	La．ers	Reost	boes	Fion	Diom	D．uss	Fi．06\％	Pent	Eicos	0.062	To．us2	E． 0.47	Feoss	Joob	En．034	to．co	Jo．a	Ia．a	laom	O．	no．	0.0	e． 0	0.0	a．	a，	［0．001
tsae	10．000	10000	a．000	0，002	Ic．008	［0．024	Eeost	Tices	Tun？	3.102	［10．102	10．09	［1080	或迆5	0.065	E0．052	E． 040	tlo． 33	［1a034	［0．023	E0．as8	0．0．	［10．03	10.00	10.0	uos	0.0	10.00	0．00	0.0	0.00	［10．000
1990	I 1000	10000	0.000	0.001	10.003	［0．010	Fana	chous	Pocos	D．075	10．05s	E0too	ain	locas	Dose	Diove	E．0s3	ta000	Fhosz	L0．029	L0．022	I0．01	10.01	la，0s	a，00	0.0	0.00	10.00	a，${ }^{\text {a }}$	0.0	0.50	
1501	10．000	｜a000	a．0．00	n． 001	I 0.000	la．010	lamz	Theal	Dioss	Ii．07s	20．075	［1．037	［icos	Toss	Dies	Wem	W067	Dous	H004	Doas	10，208	（0．0	lo．	－0．012	a， 0	n．cos	0．a	0.0	doo	0.001	0.001	
1992	\＄0000	10．000	0.002	0.006	E0．015	la． 035	20．05s	Dion	E0．882	［0．033	0．032	Vio74	d	Blosf	063	To．ass	B．ast	D．0e3	E．033	［0．030	T0．023	T0．0	0．0	0.0	ac	0.003	0.002	0.0	a．001	α	0.001	
1993	10.000	｜a000	10.000	0.003	10.005	［0．014	lou31	bion	Dom	Eit	Loiss	［0111	O．122	E0．09	Moro	10．00	E．049	l0．03	Fou23	10．022	E0．019	10.013	la．oc	lame	on	± 0	0,008	Doon	a， 0	0.000	0.000	
1002	0.00	laon	c．a	0．0．	10．0）	loon	$1{ }^{1} 0$	thon	Timem	Dices	ar	（s．0）	\％own	［icht	W．${ }^{\text {con }}$	D．066	Le．052	San	1，03s	bocos	0．al	D．as	lo．01	Q 01	a．co	0.0	0.0	0.02	Q．00	0.00	0.000	10.000
1095	0．000	10.00	0.0	0.0	10．00	L0．015	E0．036	Slot	D0．07	Di．0．	D．0st	${ }^{\text {ERag3 }}$	coso	Toce	D．072	0．065	2．05	． 0.04	0.028	0.00	0.0	0.018	0．0．	10	100	aco	0.0	0.0	0．00	0.00	0.000	10．000
1996	10000	Ias00	0.00	u．a	lo．006	louza	Te．062	Dont	D095	D． 130	Feny	E6089	cos	Elucs	B001	10.048	E． 03	Paoz	F019	T016	0.01	0.01	la，	｜a00	a，0	－ 0	0．00	¢． 03	0.00	a．0	a，	｜0．000
1988	10.000	10000	0.000	0.001	10.004	Fo．03	Touss	Ticar	$\underline{\text { Eaid6 }}$	10．122	Loios	ए．0\％	Tacor	（fic6）	W049	Tb．as	E． 037	Ia．az	［0．022	Ioots	0．03	0．a）	10.007	ano	a．cos	0.00	0，00	10．000	and	2000	0.0	10．cos
1999	10.000	1000	0．000	0.081	I0．006	lo．014	Fens	2066	Fom8	Dinis	E．124	［．098	10092	Bicao	W066	［0．052	To．03	Ta．n3	Ta020	I0．021	0.01	0，01	to．0a	1008	14．00？	u．	0.0	0.00	coon	0.00	a，	10.001
200	10.000	10000	0.000	0.000	10.004	IV．009	laors	Diob	Tines	［D．108	0.117	Tares	Hac9	［iors	0.75	T0．059	E0．04	la	［10022	Lo．018	0，	0.0	Io．0	0.00	10.00	0.00	0.0	0.0	an	0.000	0.00	
N01	10．000	1－000	0.000	d．a01	10．004	10.015			Wıy	0.12	W0．109	Tions	Tico－	［10．046	［0．032	［0．023	－0．02	fayz	lo．oas	Io．oss	naus	\＃0．0	\＄0．01	d．01	aco	0.0	0，0，	Io．a	a，	a．oo	a．co	
2006	0000	｜ 0.000	2.060	0.001	10.002	10.017	T． 058	Q 218	0.16	135	0.117	50．00	Tass	cos	2030	10．033	0.021	cos	lo．024	D0．022	0，0	0.0	0.01	ao	0.00	a．c	0.9	0.0	0.0	0.00	0.000	
20	10.000	lacos	0.002	0．008	lo．017	teoso	12063	0320	a．11	0.109	O． 100	Ton	Cos3	luood	b． 38	Don3	0.023	H002	Iaoz	10.02	0，0	0.0	．0．	a，	，	－	，	0，	，	－0，		
x006	10．000	lacen	$1 . .001$	0.005	L0．017	T0，049	－ans	］－6\％	Tiose	Tions	Thi．0s	Fent	Pob	市ess	1042	［0．040	cos	（0．）	fo．${ }^{\text {a }}$	Inos	no	¢0．0n	on	a，	ac	0.	0.0	Q0	a，	abo		
2000	10．000	｜acos	0.002	0.010	10.029	10．062	Elosz	DLe78	D．082	0，100	E0．092	\＃0．076	Dics 4	［0．054	D099	F0．038	E． 034	F0．032	Ia 026	［0．039	［0．023	0.018	P0．01	10．007	cos	0．a	0.00	10.00	a．a	2．00	0.	0.0
2010	\＄0．000	｜a001	0.003	0.012	L0． 133	Fo．063	T0094	Oiv9	F079	－0．036	F．ars	Wh．063	Ia 0 S2	Tosas	10．040	T0． 33	I0．030	E0037	facz7	－0，9	L0．022	10.017	F0，017	Iavis	10.006	0.00	0.003	10.001	0.00	a．001	0.00	a，
2011	10000	lacol	0．003	0．010	to．ars	Doee	Pomi	Toe93	Hisom	Dior	biocos	Lens	laoss	biont	0．039	E0． 314	li．0．31	laves	Faost	Dope 4	10．8и	0.02	Ta010	0.009	acos	a．cos	0.002	10.001	0.001	2000	a，00	0.00
2012	［0．000	｜a．co1	0.003	0．010	［0．024	E0．051	Leom	W．110	［0．100	W．as2	D．aso	Fi．ns	20058	Eios3	10．046	T0．034	Fi．024	［0．027	F｜021	Lu．025	E0．018	I0．019	Fa．018	0.005	－． 207	0.005	0.00	［0．001	0.00	0.002	0.00	｜0．001
203	la000	10.000	a．000	0.002	Io．011	F0．030	F006	9 min	［0．307	10.099	［0．0ss	10．80	lagis	－0．035	Forent	T0．036	Fo．031	E0az6	F0．024	［0．026	10．220	［0．019	Ia， 1	10.010	a．007	0.006	0.004	1，000	a，0	0.002	0.001	「0，002
2014	a000	10000	a．co	10.005	10	Lome	0.060	Leor	$\underline{0.09}$	licasa	To．050	Lioss	laozs	bocts	B．o43	Fo．pm	O，	Jo．	lo．us	［0007	Io．an9	E0．03\％	10．014	lans	aon	aco	0．aso	0．0	an	0.0	a．006	10.007
2015	0.000	a．001	0．006	In．ase	F0．036	Liom	Eairo	Paine	［ions	Exom	16．072	E．0．72			li． 040	F0．034	la．aza	F0．028		Fa．023	Io．as9			｜a00s	Ia．0a3	｜ 0.002		10.001	0．000	2000		

Table App．A．5d：West coast longline，species combined，sex－aggregated，catch－at－length data
West coast longline，species combined

Table App．A．5e：South coast longline，species combined，sex－aggregated，catch－at－length data．
south coast longline，species combined

Table App．A．5f：West coast longline，M．paradoxus，sex－disaggregated，catch－at－length data（Somhlaba and Leslie，2014）（males in blue，females in pink）．

崖	19		д					33	55		3		43	45	47	49	51	3	55	5）	59	61	ω	ts	67	tis	11	3	3	7	9	nit
2000	Q000	0．00｜	0.000	6，000	0.0001	a，001	Q0．00	0.0001	0.001	0 001	0.002	Q．0031	0.0041	a006	0.006	anow	0.013	0．018	0，034	0.034	D045	0.07		$1 \mathrm{LOS5}$	0.104	0，093	20897	a．oss	apts	0.059	0.08	0.030
د100	abosi	unco	niom	0.000	0.0001	a．mol	Q．000	a， 0 al	41080	troul	0.001	Q．003］	Q．002！	ambal	a．osp	tros－	0.0072	a．c10	0.000	0.0	tow	a，aza	abo	$\underline{1.3}$	0.1	0.808	tith	Q．asp	a．0al	0．0so	not	0.574
2001	a000	0000	0.000	0.000	0.000	Q ．mol	2.050	a000	0．002	0.500	0.003	0．063	0.008 E	do3s	0.023	0.049	aens	Ques	a	Q 0	0.0	20	0	148）	Os	0.6	a．as	0.03	0.031	2033	ance	0.016
2001	novel	anob	0.000	a．cob	0000）	2.0001	a．000	a．osol	anco）	0.0001	0.0001	Q．001	0．001）	a．002	noss	a006 ${ }^{\text {E }}$	0.031	0.019	Q， 0	O．	0.08	aot	0．	ues	0.10	0.0	Tous	O．38	towe	0.054	V0．040	0.027
2000	0．000	1000	0.800	0．000	0.000	a．000	a．080	c．0s0	a，00n	0.000	0.001	e．001］	a．003 1	Q．006 1	quss	a．14	10．02	0.028	8．o．	0.05	aum	Qup	and	20．	0.03	0.60	18．08	Tabs	W0s6	0.061	0.052	0． 0×0
2002	$0.080 \mid$	0.000	0.000	0.000	0.000	a000	Q．050	a，000	4050	0.0001	0.000	0.001	0.002	amol	0.003	a．xal	0.0	0.8	0.0	Q．0．	20．	am	not	Hem	Dop	0.108	O．0．	2， 0	00	dos	D065	0.027
1003	0080	noc	0.000	0	Qo．	mo	001	a	0.007	0.8	001	0.008	ama	a，	ס080	0.3			am	Ob	no	a	109	inom	aco	0.0	a，m	o． $0^{\text {a }}$	0.0	and		a，
2003	0．000	a000	0.000	0.000	0．005	a．00］	2080	0.000	a．00）	0.5001	0.000	0.0011	0.001	Q001	apes	a，ocs	0，s	0.0	0.0	0.0	2．0	－0．08	a，	as．	0．0	0.0	dor	20s	0．0s	0．04	cos	0．0s
2004	nose	0，000	0.000	0.000	6，000	2000	9.000	a．001	anot	a．coz	0．021	Q．002	a，t2	0.035	0.020	0.020	0030	0.08	0.0	a，	a，	alse	Qin	03	ase	0，00	0.04	a，30	0.025	0.014	a．sia	0.006
2006	u0col	u．00	0.000	0.000	0.005	a．000	0.050	a．ssol	a．000	anow	0.500	0．001］	0．004｜	6．007	4032	\＃	0.029		3．0．	a．		Qus	0．x	10．2	Wem	base	6．0．	a．us	¢una	0.027	$0.019{ }^{\circ}$	0．312
2005	0．0xal	abso	0.000	0.000	0.000	0.000	apso	0.001 ！	n001	0.001 ！	0.0021	0.0078	0.044	a019	0.030	notu	O．es		8， 68	210	2099	nos	¢08	Hoes	0.06	0.08	0.03	Q．0．23	0031	0.011	a．cel	0．ses
3000	a．080	－1．800	0.000	0.000	9000	Q000	a．000	a 080	10．00	ason	$0.000 \mid$	0.001 ）	ama	amas	asse	0.08	0.09		ocm	no．	nom	ก\％	ato	ins	0．0．	0.0	am	ams	0.081	0.0101	0.881	0.01
2006	cose	atco	0.000	0.000	e．00s	0．009	2000	a 0001	10.02	0.504	0.005	0．cos	0．034	2018	ama	0.0	cose	0．0）	dos	0.2	6， 2	Q13	avo	\＃10	0.85	0.0	0，0．2	0.024	0.036	a00s	ancol	0.000
O20	400	a000	0	0.	0.000	a，00	a．050	a	0.000	0.5001	0.000	Q．002	Q0033	0.0061	0	0.0	0.03	0.0	a，	G．i．	Q03	atco	0.0	as	aso	W，	aub	am	ana	0.023 E	0.0101	0.011
	0000	0．000	a 000	0	6，000	a．000	asea	u．062	1.062	0.002	－ 0.003	a，tos	0.013	am	－ 438	Hos	Qaz	0.09	d．abe	e． 0	6． 10	0.04	40：	as	0.8	0.00	a，s	U61	a．8	4015	0.830	ato
2007	0s0	e．000	0.000	0.000	0.000	0.000	a．aso	0.000	a．pel	0.001	0.608	0.001 L	0.001 ］	a．082	0.005	0.008	0.019	0.03	B．as	2．0．	3.10	0.13	1811	U11	Oen	0.07	ars	2.042	0.027	0.017	0.0121	0．503
joce	0．080	0.000	0.000	0.000	9.000	a000	$\underline{0} 0$	0．000	0.001	0.001	0.001	0014	0.020	am3	0，	0．0：	o．sem	0.07	0 cm	S．en	n．m	（am	0.0	1．es	acs	a，	9.00	0031	0.08	－0．38	0.010	0.007
zoce	abse	Qucol	0.000	0.000	Q．000）	Q．000	a，000	a．000	n．060）	0.5001	0.001	0.004	0.005 ｜	a．an2	amab	0.0	0．039	e．ab	d， 0	2.0	$\underline{0} 1$	a，	a．	n．	a．c	0.00	10.03	0．034	0.026	a．029 ${ }^{\text {I }}$	0.017	0.012
2009	4.000	0.000	0.000	0.000	0.0001	a．00］	a．000	2050［	0.065 E	0.15	0.0091	c．000	0.018	0.039	masi	0.0	206	0.58	0.14	am：	ро90		and	0.5	0.03	0.034	－0．33	0.001	0.056	$0.035{ }^{\text {E }}$	0.012	O． 008
J009	nosen	aum	0．000	0／a00	0.000	atool	ausol	u．boa｜	noso	0．000	0．cos	0.0011	a，000 ${ }^{\text {a }}$	Q．008	4.080	nos	10．04	0．0ns	d，0x	Si12	bien	${ }^{0} 13$	uiteo	0.08	（\％）	0.081	e．us	a．03	0．0．8	a．0131	ansool	－ 8 204
2010	0000	case	0.000	0.000	0．005	2000！	2，050	2000｜	0．002	asml	0.003	e．003	2.008 I	0.093	0．02	－0，	0.075	10.684	8，0\％4	Soso	2.058	2.055	B．056	ama	Osa	0.06	B（6）	0.032	0.031	${ }^{0} 03931$	asca	0.916
2010	ао	0.000	a，000	0.000	0.000	9.000	1080	a080	（000）	0.001	0.000	a．col	a001）	ampl	an	0	0.011	dor	－aces	0.081	a，ms	does	0．07		0	0	a	0.084	a，os	O．ns		

Table App．A．5g：West coast longline，M．capensis，sex－disaggregated，catch－at－length data（Somhlaba and Leslie，2014）（males in blue，females in pink）．

Lenth	19	11	\square	2	21	29	31	33	55	$3)$	$3)$	41	43	45	47	49	51	53	55	5）	$5{ }^{5}$	61	6	t5	61	6	71	31	3	7	9	
2000	${ }^{0.030} 1$	u000	0.000	0x00	0.0001	a，000	0.050	a，030	0.00	0500	0.000	0.002	0.0061	a．0．8	0.023	1028	0.00	0.805		O．t92	O．092	Q123	8.220	Hess	0.971	8.063	0.043	an29	0.010	0.010	0.017	4，902
aso	0.0001	ancol	a．com	0.0001	0.0001	amol	Q．080	ancol	nasa	0.0001	0.0001	a．con ！	Q．002 1	amss	ann	0.010	as	1.038				a，	\bigcirc	new	nem	0000	amb	2.082	0.08	－0．04a	now	acas
2004	0.000 ！	1000	0.000	0.000 ！	s．000	Q．mol	0.050	（000）	－aso）	0.800 ！	e．ent	o．0．1） 1	Q0．098	（007）	ampl	0039	－0007	gors	A31	610	Q 0.13	Q0s	On	20.06	0.00	0.03	0.03	¢023	0．0．6	0.097	（．9m？	0.0
2001	1000	0.000	0.900	$0.000 \mid$	0.000	20001	a，080	a，050	0．000	0.0001	0.001 ！	0.0021	9．002）	a．006	0.085	0．0n1	0.819		0.00	are	Q10	nos	0.	081	0.0	D，0m	a，	20．	0．05	004	00	0.03
2002	10.00	2000	0.500	0.000	0.000	a．000	a．030	0.050	0.000	0.000	0.603	0.000	a．wo］	Q． $\mathrm{D} \times 4$	4．004	0.0001	a．en4	0.00	0.04	6．02	1a， 2	《13	0． 1	Q．2a	0.0	0.0	Qus	a．0．20	0.02	0.01	0，	
2002	0.008	a．0．0	0.000	0.000	0.000	a，00！	a．030	a，000	a，0al	con	0.000	0.008	0.0001	asco．	0.001	0002 1	$0.06]$	0.00	0.04	0.03	new	0．03	A． 1	H13	10.	0.1	a，	0．069	0050	0.035	102	，000
mom	0050	0．000	acom	0．000	－000	amo	a，00	aveo！	nam	0.001	0.001	amm	00m	ams	0.903 ！	nnont	asor	n．019	oon	0，04	num	nom	an	20\％	0.2	0.1	90．	am	0.04	0.0	no	
2063	a000	0.000	0.0001	0.000 ！	0.000	Q．000	2000	a000）	0．000）	0．5001	0.000	0.0001	0.0008	0.001	anas	0．002）	0.0041	0.508	0.043	0.021	20．03	a， 0 S	a，	［1．tis	0．	Q． 1	Qit	Q． 104	0082	a．66	O．S	1.0
2004	a000	0.000	0.9001	0.0001	6.000	a000 1	a，000	a．000	ancol	0.001	0.0031	a．009 I	9．054	a015	2099	0.03	0036	0，000	0.0	abs	a	ats		as		dos	－a3	ams	0.012	a，ose	noo	a，
2004	1.060	a．00］	0．800	0.0001	0.005	a．cool	a．0so	0.0001	a．axi	0.500	0.0001	0.000 ］	0．000］	a，001	4003	0.0041	0.010	0.01	4．02	0.04	a．	a，		Den	10.8	S． 10	Q10	（amb	bum	b，0es	0.04	0.051
2005	a，0e0	2000	0000	0.000	0000	Q000！	a，050	0000	nam］	0.00	ncom	0.021	0.0031	cose：	0.009	0.029	，		3.0	10，	01	121	¢1	H09	10.0	0.09	0.0	cme	0017	0.042	08	0.807
2000	a．000	a．ne0	n．000	0.0001	a，000	amol	a．080	a000	anco	0.0001	0.000	0.000	amal	a．mpl	amod	－1005 5	0.08	n．0	0.04	a，m	no	axo	0．1	［1．1	0.10	0， 0	Q，	a．s3	0.041	－0，	00	
2006	000	0.000	0.000	0.000	0.000	a．000	2.050	0.008	（0026	0.023	0.035	0.006	0.027	a．019	6021	20.036	a．oc	0.0	0.06	0.0	a， 0	ax	这	1 ta	0.0	10.0	0.022	0.013	0030	0.006	ano	0.002
2006	0.000	0.000	0.900	0.000	a	nol	a，000	0.080	0．0．0	0.001	0.003	a．cos	0.004	a007	${ }^{0} 012$	0.019	0.023	0.08	0.03	0.04	10．05	0.0	0.0	0.1	0.10	dio	sost	ator	0.05	0.03	ana	，
2009	cos	aow	4.000	0.0001	Q．000	a．000	a．asa	a， 050	ana	0.001	0.801	0．017	a．324	aur	1.044	0.061	a．cso	0.0	lo，0n	aur	Ha，	a，	0us	0.04	O．cos	8．0．	a．as	tum	${ }^{6} 041$	0.010	0.8	abo
2007	${ }^{1} 0080$	coce	a000	0．cm	smes	amo！	asse	n000：	ancol	0．cm｜	0.001	2002	oms	4．029	uest	0．862	0.04	anc	B，06	abs	Wab	gos	Bna	Dist	O） 8	0．0．5	No．r	T．046	0．0ss	Qoas		0.01
2064	0.000	0.800	0.000	0.000	9000 ！	Q0001	${ }^{\text {a }}$	a．001	0．000 ！	0.001	0.000 ！	0．0n ！	a．0．3］	amp	0.38	0.9	0.05	a，en	now	ator	nam	tom	ab	nor	00	0.04	am	1.084	0.029	0.02		O
2068	0.0001	a．000	0.000	0.800	0.0001	a．ceo	2000	0.000	n．000）	0.0001	0.0001	0.002	0.005	a．007	${ }^{\text {a }}$ ．0ce	0.018	0．0．23	u．0s	0.048	0．054	a．D？	0.10	apes	${ }^{12} 88$	Lo．a	0．est	4074	dasb	6052	a038	0．03	2．033
2009	0.000	0.000	0.000	0.000	0.000	a．000	a．081	0.002	0.904 \＆	0．504．	0.007	0．0．	am	ame	$\underline{0} 036$	0.037	acta	0.0	0.05	0.004	lans	B09	30.9	Oos	$\underline{0} 06$	0.048	－0，39	Zab3	0.026	0020	0.01	0.910
juce	nose	avow	0．00）	0.00 ！	atem	amol	a．0so	a．001 ！	nast	osen＋	0.033 ！	0.005 ？	a，me	quest	4.989	пп¢	0.08	0.00	miss	6，m4	aus	Q09	－un	3：80	Tosa	nom	a， 04	2．044	Quss	4093	n．810	asa
2010	0.000	0．000	0.000	0.000 ！	0.000	0.0001	a．0s0	0.050	0.000	0.000	0.001	0.0121	2．008	0.017	0.027	0.039	［0．al	0.078	景115	Q．110	3134	Q． 28	0.076	0.06	0．97	0．ask	－034	ama	0.026	0007	0.80	0.0
10	a080	a，000	0.001	0.0001	9.000	a．001	a000	a，os	－1000｜	0.000	0.001	0.0021	a002 1	amos	anos	0.011	0.919	0.08	gom	ase	\＄100	（i0）	non	nom	a，	0.00	a．m	acss	am	0.040		

Table App.A.5h: South coast longline, M. paradoxus, sex-disaggregated, catch-at-length data (Somhlaba and Leslie, 2014) (males in blue, females in pink).

teuph	19	3	3	8	27	29	11	3	15	37	2	41	43	45	47	49	31	53	5	5	35	4	${ }^{\omega}$	6	67	ω	73	7	73	π	74	达
2001	n000	0.0001	0.000	0.0001	0.000 ?	Q0005	a000	${ }^{10065}$	00661	0.000	0.005	. 0.005	0.000	Q015	0031	0.015	0.051	0.071	8071	-693	0.051	nosy	und	0026	(0.61	0.07	Q0.051	0.036	a031	0.026	0.0361	0.010
2001	00001	0.n00!	$0.000 \mid$	asm	-0.001	0.0071	400?	2003)	anen !	0.00	0.000)	e.0001	0.0001	a.030	0022	0.0071	0.807	0.014	6.05s	Fo.65	2058	2150	30ss	0.065	10.33	Casos	8090	$\underline{0.651}$	ansi	${ }^{00} 36$	(0.029	0000
2056	2000	[000)	2000	0,000	0.000	0.000	2000 !	dosol:	n.osol	0.000	0.00011	-aty	Qust	ates	ties	atsa	0.053	Com	6iss	Q10	a.0ss	auss	1000	neme	0.000	0.0001	2000	Qu00!	0.000	avoct	ascol	0.002
2006	ancol	$0.000 \mid$	0.000	0.0001	0.000 [9.000\|	amo \|	n.mod \|	0.000 !	0.0001	0.009	a,0n7	Qus	Q1ap	1020	Huter	ase	D, mm	0.000	a.03	1.0.20	2030	n.000	n.om	0.087	0.0001	0.000 l	0.028	0.0s?	пusal	a.eol	0.000
2008	a,00]	a,00]	0.0001	0.0001	Q.000	0.0001	a000\|	0.000 !	n.800!	0.001	0.5031	comb	Q.044	ama	0.334	0.043	0.973	- 882	Ocs9	Com	Q 1006	Qten	-uesa	ugro	0 0, 1	0.038	(002)	a.012	a.as9	0.006	anco	0.000
\%	2000\|	a0001	0.001	0.0001	6.000	\$000]	a.00]	0.000 !	0.00]	0.001	0.001 I	0.005 [Q0.015	(0.019	0.029	0.036	2056	0.06	b.aer	Que	Lien	-0,3	620	Woe	10.078	0.045	Qa32	6029	0.011	0.0021	0.0001	0.000
2000	,000	a.00	0.000	0.600	4.000	a.000	0.000 :	0.060 !	0.000	0.005	0.017	0.0.) 1	0.017	0,032	0.046	q.aso	0.8	0.23	8.16	0.	6.07	0.04	0.0	0.02	0.31	0.62	0.019	0.034	a00s	0.000	0.000	0.000
\%os	nusel	nowl	${ }^{1000}$	0.001	-.003)	$2.000]$	2000.	atoa)	${ }^{11.060]}$	0.0 mb	${ }^{0} .013$	cosat	0.005 2	ams	по\%	anse	$\underline{0.093}$	ein	6.11	0.1	Qus	-0.48	0.30	11.00	0.con	0.0001	1 cous 1	a,000 1		noso\|	anmol	0.000
2010	${ }^{\text {nocol }}$	1000]	0.0m	0.0001	0.000 1	a.0031	Q0.00!	a.0s) :	0.065	0.0 m \|	0.0051	0.cos	amol							a,	p.as	-6.38	n.em	0.03	a, ont	0.071	6051	amb	0.351	1026	- 0 ns	0.010
2010	noco	0.001	0.000	acol	0.000	amb	a007	a007	0.000	0.0001	0.000	0.000	amol	a020	0.022 !	0007	0.007	0.014	0.	a.031	ause	als	ao	0,065	01138	0.000	a,aso!	a.051	0.051	0.036	0×9	-

Table App.A.5i: South coast longline, M. capensis, sex-disaggregated, catch-at-length data (Somhlaba and Leslie, 2014) (males in blue, females in pink).

ah	19	21	\%	25	$2)$	29	31	3	15	37	3	41	43	45	47	49	51	3	5	5)	59	61	6	¢5	万	ω	71	3	75	7	\%	${ }^{1 *}$
2001	a000	[100]	0.000	0,0001	0.000	0.0001	amo	2000	unoca	0.000	0.0001	a.007	006	a00 1	0.023	0027	[0.07	0.005	gon	(6m)	a092	0023	$\underline{1} 20$	4095	0.071	0.001	20043	0029	0.01	${ }^{1030}$	0.012	0.007
2001	0.000 !	0000	0.000]	0.0001	0.0001	a.000 1	ana !	0000 !	0.004 [a.ce4	0.0071	e.0t1 ${ }^{\text {E }}$	0.020	a.ase	0.036	-	asea	0.052	0.666	a	3.0n4	anss	nob	BS	0.	0.048	29	a.as	amal	$\underline{0} 20$	and	0.010
2008	0000	now !	0×001	0.000)	a,00!	a000!	2050	aneol	oncel	comb	0.001	orts	ams 1	a0n	2087	0639	com	Qor	Qun	O.15	213	0.8	nom	aro	gor	0.03	Q034	amz	antal	2000 1	0.007 [0.004
2002	$0.000 \mid$	0.000	0.000	0.0001	0.000)	a.000	0.000	a.uen	0.000)	a.coul	0.001	Q.0nt 1	0.008	a.uz	0.027	2030	-0.04	11.078	9,126	Q110	-6.13c	Jous	\#0.6	0.064	cors	0.03	. 0.34	20022	0.024	0.007	a.007 !	0.004
2003	0.0001	\%000	0000	0.0001	0.0001	0.0001	a0s0	a0co	a.000 !	0.000 \|	0.0001	0.0001	0.0001	amas	0,004	0.009 1	\% 010	0.08	6.08	Q0, 0	312	013	0.33	an	asp	0.0	S0,	20, 08	0.25 [0.0101	0.014 I	0.011
2003	ancol	a.aco	0.000 !	esoel	0.000	2.000	2020	ancol	aboal	acoul	0.0001	a.0.0n	$2.002]$	ases	n0.11	0.036	10.00	0.029	n.0x	(0.04)	D. 0 S	cars	$\underline{\square}$	n.06	Tata	0.00	cies	Q032	Lil1	do4	,	cost
2004	cosel	a,000	0.000	0.0001	0.000	a.00]	2050	aoco !	0.0001	asen !	0.0031	0.0001	a.0.1]	a,nen	0.003 !	0.0041	0.007	Q2,	a, 0 e	0.041	p.059	a, 0 S	P. 11	0.12	0.137	Qiso	¢оя	$4.0 n$	0.046	0.35	2088	1819
2006	4.000 !	n.00]	0.001	$0.000)$	0.000 ?	s.00)	a,3so!	a,col	a.000!	a.00)	0.0031	c.003	0.002!	and 1	nuss	$\underline{0.151}$	0.039	n.03s	2,060	atas	blos	uiom	-	gax	0.073	0.000	Coms	Toms	bas2	10.0	U.083	0.010
2005	0000]	cocol	0.0001	asoul	0.000\}	a.000]	20s0	0050 I	0.060	0.sor\|	0.0031	0.009]	amal	goss	0.019	0.023	[033	0.050	doss	0.093	2012	atis	0.	U:	Dors	0.08	2034	a.03s	0.022	a.oca	0.506	0.04
T00s	a.aca!	40x0	-0,00!	Q.aco	0.000 !	amol	$\alpha^{2} 050$	Qucol	a.0co	0.000	0.0001	0.00)	amol	a 0 000	0.001	anoz\|	a.cos	u.som	0.00]	Q.003	mus	408:	$1 \mathrm{~L}: 1$	$\underline{1 \% 3}$	6.36	Q. 22	cim	0.0s9 ${ }^{\text {a }}$	-0.301	20.5 ${ }^{\text {d }}$	0.027	a.000
2006	a.cos)	2000	0.00 !	casol	0.000 !	a.000	a000!	ancol	asoco\|	$0.000 \mid$	$0.000)$	0.002 L	a.0331	a0a ${ }^{1}$	1009	0.031	10asa	0.052	a078	das	ail	3.22	$\underline{13}$	nosa	0.56	T0.05	Q0.4	T.0.29	0001	0.012	0.08	acor
2006	nucal	atom	0.000	9.00)	0.000 !	a.000]	Q.5s0	ansol	u.gan	0.000	n.00)	0.0001	amol	amil	nocol	n.0001	0.904	n. 004	0.913	0.01	¢0.0n	0 ars	пun	7.0m	011	Sil	Qu1	12,104	ann	-1003	n.04]	1037
2008	amen	cocol	0.000	0.0001	0.000 !	2.00)	20000	20se ${ }^{\text {P }}$	0.026	ama	0.085	0.005 E	(0,47)	2.099	0.021	0036	Oosi	0.042	0.065	0.073	a,ns	Tass	anm	2.as	0.663	0.060	t.0.2	0.013	0.080	0.005	0.004	0.002
jose	abcol	anco	n.000\|	0.0001	0.0001	a.000]	20050\|	d.0.0)	ungof	0.0001	0.000	0.0001	- mol	a.001	0.303	प.00:	0.0na	0.977	0.008	0.84	Dime	400	n.0	IISm	a,sen	0.10	9.100	Qops	0.09	a,0es	n, 049	0.031
2000	0.080	$0000]$	a.s00	0.600	6.000	(0.00]	a000	$0.000 \mid$	0.002)	0.501 \|	0.0031	0.017	a.32	a031	0.044	U0661	0.056	0.032	O, eso	0.018	b.ass	a.ess	coss	Qous	0.063	0.053	0.006	6.032	0.041	0.039	0.027	0.005
2009	nose \|	num)	asom	0.0001	0.0003	a000]	a,0001	tusol	nuxal	anow	0.0001	$0.000]$	a.m1]	amal	u009	nuos	0.019	0.998	0.041	t.os	tos	4.01	4.11	0.30	Qum	Q, 0 :	amo	a,083	О०म	-1039	1.02	a.900
2019	cosel	[00)	0.000 !	0.60 ?	0.003	2000	0.0501	0.0081	an00?	acent	0.0001	c.006 ${ }^{\text {F }}$	2.008	2.032	0.018	0.037	-0.059	a.seb	8,09	2. 104	20.07	2006	${ }^{2} 065$	0.007	0.539	8.647	Q.651	20.04E	0.029	0.024	0.s32	0.034
2010	a,000	anob	a,00]	0.000	0.000	a.000	a.080	assol	ancol	0.001	0.0031	Q.00s)	0.0041	a007	0.012	0.015	0.027	0.089	00	а.04	a,05	a,0\%	0.003]	n:02	0.107	0104	0.04	amb	0.052	0.31	0.02	

Table App．A．6a：M．paradoxus，sex－aggregated，survey catch－at－length data（Fairweather，pers．comm．）．

																																					，	
Tans	20m		，		\％	sman	Eme	оия	${ }^{2}$	tex		anx		mame	unan	neau：	${ }_{\text {axam }}$	nomer	newom	amos	amen	amel	amax	acem	asam：	acent	acone	arser	aveeo	nomm		asour	asom	nowe	nowns			
108	20：008		cous E					\％ma		Im	\％			＂	nuen									oudest：			dapous					duablas		ivobir				asamir
，	Tranow oxm	（om	\％m				max	em	oma		sume			6are\％	6um	coms	6man	6min	оman	（omal	crais	amie：	cmes	¢omm	wem						amm	axem	ame	Leme	4 mm	amon	2000	tw
${ }^{10}$	essel \％man	mpaze	amot				mmom	E17	bspu	Lma	Tomi	ans	1005＊	me	somes	－ome	octat：	osuar	somut	Ocesp	osmes	ancel	amen	dome	asest	asmos	amax	asess	amen）	somes	dame	asma	somes	taxa	tame	axal	ase	vaxat
107								nemat							sam	वetis	exm	neme	noma！	охи＂	амим	пxum	naxa	мащ｜	asern	Heus	name	civem	avem	somes：	งami	пım	Amm	ta0\％	，mim	mmin		
min							tum																															
200	апиad	muns\％	mosa）	2mas	ma	1	km	kı	ar	km	аты	Lixm	um	nem	¢om		uen					nons：	amim		ase		，	as	ase	0	nown	amat		100		ament		and
	нean oxiom	мeas，	Hsm																																			
	1 ，																																					
	\pm						Eman																															
	\％oso																																					
	Lawe																																					
\％																																						
10．	\％	mataz				（1）																			асан！													
	\％	，																																				
\％	Fsmos csman	，	相	зиит	\％eme	＋wm	tens	．omen	siam	Exain	Smax	numa｜	Dosars	noma	a	uen	asax	usam	noser	nema	asam：	（0xom	acase	avas	asalim		asem		asear					Towns：	Naxi	Name	asmos	
	\pm		ax		\％	tean	\％	（omas		now－	couex		Oexer				¢0，								азени							arowors		toven				
\％om							baxed											Sous			coert	comel	comed	quesin acevs）	aven		coev					（emed						
120	s＊＝1iom	km	mm	smm		Lemom	E	osmul	（x）\％	（mandi		ппеत	Sem	rear		pman	sump	numsi	1amel	Qeaty	amini	nimp：	aram：	acmm	asant	somp	asem	（9aty	9reet	so		งะเง	som	＊x	18	\％exer	amms	
\％	，	－																																				
	\pm		men＝	2xase	（1）							Tuma		－usar	$\underline{3}$	hexam	usam	Hrea）	Womis	Lowa	Fuma	grami	gismer	100\％	avent	（ust		asa	Tueto	zom	ama	Tumi	Wemo	\％000	Naxeo	Smix	ax	
	twaees																					noum：	amea		ames													

Table App．A．6b：M．capensis，sex－aggregated，survey catch－at－length data（Fairweather，pers．comm．）．

登

促

Table App.A.6c: M. paradoxus, sex-disaggregated, west coast summer survey catch-at-length data (Fairweather and Ross-Gillespie, pers. comm.).
West cosst summer survey, M. parodonos

rest	5			11				19			25	2	29	31	33	\%	3)	38	$4{ }^{4}$	43	${ }^{4} 5$	47	,	St	34	\$	51	34	61	63	65	6	\leftrightarrow		73	,	\square	79	81-
1931			4.007	somil	0.010		1.	On	uasol		0.000	ko	00	00	200	00	00	co	00	020	200	ami	50	00	00	cos	mo	50)	200		380	col		sol			col	1	
	aco	0.000	0.007	9000	0.09	0,02s to	0.066 E ${ }^{\text {a }}$	acer	0.900	a,001 0	0.00	9,90	a,001	0.000	10000	0.0001	0.000	a,001	0.0001	0.00018	asoo! 0	0.001	0.00010	0.6001	0.000	0000	0.0001	00	0.060	0.000	a.000 -	sate	0.000	0.00	a,000 0	0.0001	o,	ace	
				2000) 1			Q344					0.0501.				com		,	Lem	ama	0.000	nom	$\square 090$			00	a,									0.0			m
		ateo	a0e 2	2018	ape		100	此			0.0		2.000	ou		a,000	0.00	0.000	a,	O, 0	b.000	0.0	a,	a.000	a,	Q0.	a.d	a, 0	as	a, 0	0.0.		o.		ateo	¢0		0.000	0.000
		acon 1	00	908	nom	acus lo	cont Io					9000 10	.00	as		100	0.	d.00	a,	om	0.000	a,0	a,	2.000	O.0.	ex	a,00)	O.0.	0.000		0.0	8,000	am	80	2000 10	a.000		D.000 1	0.000
				-												n000		0.000	nom		v,000	no		a,	a,		a.em	a,	-0.0.		a,					aum	-		0.000
			am								an		am			1000	a,	-a	am		a,80	an		a,	- 000	O.		0.0	0.8		ood	ase	am		acm	am	Ose	n.a	0000
										0.0001			a.m			0.00		D.scol	± 000	0.000 I	D.601		0.00010			0.050	2.00	0.00			0.0			o.a				n.0.	
		a,0e:								0.00	ao		4.00	00		0000		0.000	0.000	,	acom	a000	0,	0.00	0008	Q000	a,001	0.0xel	Q000	00	0.0	a,60	a,00]	0.8	a00 1	a,000	-000	1000	0.000
20									asso			a.000			ascol				utun)	0.050 :			0.0001																
	0.30	a,	a				este For		0.	0,000	0.000	aso	a000	0.030	00	0.000	a.000 10	0.000	0.000	0.asol	acoo	0.000	0.00	a,	0.003	0.060	a,00:	0.050	50001	a,om	0.0	0,00	a,00	a,9b	a,001 0	0.000	asco	0.000	0.000
									a000			asso	a.000		ascoi	amo				O.080 ' 0			0.900 :			O.x			0.050		-a.			-as					
2012	a.xo	a,003	0.004	5.0	0.09	000) ${ }^{\text {a }}$	419	a, mo	a,	4.00		9.800	a,00	0.000	9.0	0.000	0,0	0.000	a,00	0.00010	6,000	a000	0.980) 1	0.00	0.0001	os	a.a	0.000	0.000	a,00)	$0^{0.000}$	4,000	a,00\%	0.000	a,000 1	0.000	0.0.	a,	0000
	dos	ateo	a003	0.04	O2	a41003	acex	ama	0.0	a,co	a	asco	a,	0.0001	0.8	a,000	0.00010	0.000	a.000	0.0501	a,000	a.000	-.9001:	a.cm	प003)	Oos	a.00]	a.030	0.0	a.000	a.ab	a,	a.009	a.om	a,	0.0001	Q.o.		a.000
204	a.so	atoo	0.0	dor	a, es llo	0.ast lious	D	a, 1	0.	ac		0.060: 0	a,	00		0.000	0,	as0	a,to	0.0	2.00	0.00	9,900 :	0.0	uo	ad	a. 0	a,0	O.0.	a.	0,	a,	o.	-a	s,	a,			a000
	a.000!	amom	0 m	Q006 1	¢, 0215	aman 16		隹	a0	a,000 1		a.scol	0.000	ampi	Ton	nom	a.mol -	a.a	n.00	0.0	no.	0.00	O.s	n.am	0.0	Ood	tom	¢0.	0.	am	0.	acm	nom	on	7.00	am			apm
	a.soa!	a.00	a	¢	a, 0 ?	aiss	Q.216	L	a.950 0			9050]:		0.0001				Q.	-un	0.0	a.m	-	dod	ad		0.0			0.8			Q,000	0		2.	-am			0.005
2017	aoco	0.001	amb	eant	0.038	(0ay	Q13]	-113	anso	a.000	am	-nse	10m	0.00 !	0.0	aimm	amo	0.000	$1 . \mathrm{mom}$	9080	200010	amol	0050	a.col	0 mol	-000	com	ampo	0.000	am	oam	a,000	0 mm	a.as	acon 1	amol	Q000	nomo	0.000
197)		n. 0	a,	Co	am	0.0001	Com										0.00810			0.0031						0.0		0.0			a.ase								
		am	a 0		am		Qscol 10	a																															0000
		a,001	0.		acm	,	esool	a,																															
		ato	0.		0.													d		0.							am												
		${ }^{\text {a }}$	aob		ao		-6001											a	0			0.		a,001															
$\frac{1}{4} 20$		aco	am																																				
320		at	au		+001		\%																																
		amm																																					
		a.co					,																																
		am	10		ad		¢001																																
		am	a,		a0		asco!									a,004																							
		a,000 1	10.0				1																																
2077																																							
1931			0a																																				
	0.0						e.sen 1																																
		a,001	a.000																																				
		am	a		400		Oscol																																
		amonl	a000				60001																																
							-																																

Table App.A.6d: M. paradoxus, sex-disaggregated, south coast survey catch-at-length data. (Fairweather and Ross-Gillespie, pers. comm.).
South coast spering surver. M. paradions

Table App.A.6e: M. capensis, sex-disaggregated, west coast summer survey catch-at-length data (Fairweather and Ross-Gillespie, pers. comm.).
West cosst summer survey. M. copensis

					11	13	17											,										3		63			ω	n	,	s	,	79	
1931	3,000	a,00:	0.02	[0000	a0n	3m	0.0	0.050	0.000	0.000	0000	0.000	0.000	0.000	0000	0.000	0.0001	0.000	.0.000	0.000	0.000	2000)	soo	20000	0000	-	10	0.000	0.000	umom	0,	0.000	0		0.000	000	000	
	9.000	0000		[0907]	0.ass10			10	10000	20001		a.seo)	1.000	10.001	[6.000)	0.000		0.000	0.000	6	,	aso	0	asmol	-	0.000	-0001	a,0001	0.0001	a,000 1			-000!	10.001	-0601	a000!	/	-	0.000
193	a.cco	0.000	a.000	asen	-00s	e.aspl	ased 10	0.21	2000	0.000	-000) :	e.000 10	0.000	S0001	10.0001	1.000	a,000	,000	0.000	0.0001	0.00	toco	0.001	-0xo	2.000	1.000	aso	2.000	0.0001	0.000	a.00	Q 000 I	a.00	O.00	200	o.00	¢000	a,	0.000
	. 0.000	a,000	0.004	0066	,			-	ano	0000	0.00010	0.0001	0.000	200	10.000	10.000	asc	0.000	-000	-0.	O,00	000	0000	0.000	a000	a,000	as00	0.000:	0.000	Oso	a000	as	asm	0.00	S00	$0 \times$		an	
	a000	a000	0.003	0.015	0.11	9.90	a.910	0.0.	300	0.000	-0.001 10	a.000! 10	0.000	ase	10.000	0.000	a,0	a.0.	acom	a.000 1	-a,	0.00	a,0	-000	aco	-0.00	Q00	a.o.	\bigcirc	-a	Q00	eno	am	0.00	-0.0	Q.an	0.0	aom	0.000
		S		,	,	avar!	a,n	a,	ded	1.	0.00010	.am	a,	,	.000	amb	am	a.a	as	divo	am	O.	no	ad	am	a,	e.o.		a,	dom	ame	d		amb				Som	
	aren				ass			-			asool	a,		00	a,	0,00				a,	and	On		00	a,	a,	Sob	aom	90,	O000!	0	90	asoo	a,000!	a, 0	-0,		-a	0.006
200710		a.		ac																,		a,			a,				0.0						Oon	0.0			
	-000			Sod				O1		a.0001	0.0001	a,		acen	a,0	0.0		a.	ood	a000	0.0	Oex		0,	am	a,	Cosol	a,	Qab	and	0.00	Sob	acm		aso		ded	60	
200n 18000	-ad				am!					20		-000		10000		$0 \times$	-000	a,	10.000	s.a	ODP	Q.e00]	+0.0	0.000	a.000:	10.001	- 000 !	a,	-00	accol	O.00	Q00	0.000	po	0000	0	0.0	oob	10000
	0000		ase				$1 / 104$						aso	10.000	4.000	a00	, 0000	1.000	.0000	a,col	asom	\$000)	a,	Q000]:	a,001		-000]								-000			accol	
	aco		O,	duse		aoss	a.ces	0003	9.50	a000	9000 10	0.000 !	ame	1.000	0.000	a.axe	ase	a.000	-000	8000	0.000	0.000	Q.000	e900	W000:	a,00	Cosel	a,	exp	-000)	a.co	S000\%	0.0001	a,	-0001	0.008	a.x	a,	0.000
	0.000		-0.80	aws		dos		0.2	S.00	0.000	0.00010	0.0001.	a,000	10000	0.0001	10.00	a,	100001	10000	d.000	0.000	0.000	-0001	0.000	a.0	O.00	ascol	a.	0.00	+600 '	0.0	-0.0	a.00)	a000	0.0001	0.000	10.00	ad	
2033/	9000	10000	0.00	(a)	Casen	0.012	[aves	0.00	0.000	a,00010	a,000 : 0	a,000	a,000	0,000	10.0001	10.000	a,0	10000	0.000	a,000	Q,000	O,0	a.000 1	9.000	aces	a.00s	a,00	aco	0.00	Q,xol	Q.000	asom	e.000	a.0x	O,000	-0.	Q, 0	O.000	0.000
	0.000	a.co	a,	acon 1	0.02!	Quso	\%oo	O.	a 0	-0.00010	-	-a	0.000	10000	0.000	0.00	\%.a	0.00	a.co	0.00	0.0	\$000	0.00	O.	ao	a.00	com		0.0	O.0.	$0 \times$		0		2.00		O,	-00	
20st	ason	aces	0.				ami	aow 1	O,	a,	$0.0001 / 1$	0.0001	10×0	O00	e.00	10	a0m	a.00	as	a,	e.o.	aso	0.0	Ox	aob	a,	Oso	a,	$0 \times \infty$	600	a,	0.0	a,000	0.0	Pex	0.0	0.	a,0	0.000
201s	0.00	0.004					amal	co	eos	0.0		0.00	a,	-000	a,	0.	a,	om	0.0	¢,		-0.	0.00	oa	eom	-00	OO	20	0.00	20		0×0		$0 \times$	-00	$0 \times$			
2017	-000	eoet	a,	am	acos	0.004	a,008	ant	-000	0.00	-000:	0.000	a,00	9.000	0.00	a.00	600	0.000	Oom	b000	-a	$0 \times$	Cos	O.0.	0.	a0x	bx	a,000	0000	Qa	ED	Q000	0.50	o.os	Q600	0.000	aso	a,	
193	2000						0000	mo	coot	0.007	F0.3615	bon 1	Leass		0.041	Corn		10.010			a.00s				$0 \times$	0.002		0.005	0.0001		0.008	Q0001	a.00	0.0	0.00	0×0	0 a		
	O,00	ac	0.00010	6m		esool	am																												oo			accol	
	. 800			$6 \times$		O.	eom															as					eom			ase									
	O,			Ob								aseol																											
	asoel 1			as																																			
200	, 0.00	a,	a,	a,	$0 \times$	O,	ab																								a,			oob					0.000
	Q00			0,			t,000 1																																
	-0,																																						
	-om			00			amo																																
	-0			ex			a000			a, osio																													
	eos			1 tac			1 a																																
				Oo			a,																												-				
2017	a,	0.0.	ood	10.0	$0 \times$	-0	aco	100		las) 5			Tom ${ }^{\text {fol }}$		ao	100001	a,	00	Oom	oos			aco	0.0	ab	a,	0.0		O	90	ad	-0.		0.	Occo	O,	od		
	d						a.co													0.0																			
	ascol						-																																
				a,000 1			a,000 1																																
	Sm	a,0001		dom	10		a.cos																																
							a.000													0.0031			0.0041000																

Table App.A.6f: M. capensis, sex-disaggregated, south coast survey catch-at-length data (Fairweather and Ross-Gillespie, pers. comm.).
$\frac{\text { South coast spoing surver. } M \text {. copensis }}{\text { rex }}$

Appendix B: Reference Case results

Table B1: Estimates of management quantities for the Reference Case.

		2017 RC
	-InL total	-5244.1
$\begin{aligned} & \text { n } \\ & \text { र } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	$K^{\text {sp }}$	547
	$B^{\text {Sp }}{ }_{M S Y}$	125
	$B^{\text {Sp }}{ }_{2016}$	106
	$B^{5 p}{ }_{2017}$	112
	$B^{s p}{ }_{2016} / K^{5 p}$	0.19
	$B^{5 p}{ }_{2017} / K^{5 p}$	0.20
	$B^{S p}{ }_{2016} / B^{S P}{ }_{M S Y}$	0.85
	$B^{\text {sp }}{ }_{2017} / B^{\text {sp }}{ }_{M S Y}$	0.89
	MSY	123
$\begin{aligned} & \text { n } \\ & \frac{y}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$K^{\text {sp }}$	187
	$B^{\text {Sp }}{ }_{M S Y}$	39
	$B^{S p}{ }_{2016}$	119
	$B^{5 p}{ }_{2017}$	120
	$B^{5 p}{ }_{2016} / K^{5 P}$	0.64
	$B^{5 p}{ }_{2017} / K^{5 p}$	0.64
	$B^{S p}{ }_{2016} / B_{M S Y}$	3.00
	$B^{\text {sp }}{ }_{2017} / B^{\text {Sp }}{ }_{\text {MSY }}$	3.04
	MSY	66

Figure B1: Spawning biomass trajectories (in absolute terms, and relative to pre-exploitation level and $\mathrm{B}_{\mathrm{MSY}}$) for the RC. The second and last rows repeat the first and third rows but with a different year range.

Figure B2: Stock-recruitment curves and recruitment trajectories for the Reference Case.
M. paradoxus

Figure B3: Survey selectivities-at-length for the Reference Case (blue curves for males, red curves for females, dashed curves for old gear and full curves for new gear).

Figure B4: Commercial selectivities-at-length for the Reference Case (black curves for sex-aggregated, blue curves for males and red lines for females).

Figure B5: Fits to the CPUE series, with standardized residuals, for the Reference Case.

Figure B6: Fits to the survey series for the Reference Case. The full circles show the surveys conducted by the Africana old gear (adjusted by the Africana old/new gear calibration ratio), the open circles by the Africana new gear and crosses by industry vessels.

Figure B7: Fits to the commercial sex-aggregated catches-at-length averaged over years for the Reference Case.
M. paradoxus

Figure B8: Fits to the commercial sex-disaggregated catches-at-length averaged over years for the Reference Case.

Figure B9: Fits to the survey sex-aggregated and sex-disaggregated catches-at-length averaged over years for the Reference Case.

[^0]: ${ }^{1}$ In the interests of less cumbersome notation, subscripts have been separated by commas only when this is necessary for clarity.

[^1]: ${ }^{2}$ Strictly it is a penalised log-likelihood which is maximised in the fitting process, as some contributions that would correspond to priors in a Bayesian estimation process are added.

[^2]: ${ }^{3}$ There are insufficient data in any series to enable this to be tested with meaningful power.

