## **Updated Reference Set Operating Model results for South African hake**

## R A Rademeyer

## November 2017

Results are given in Table 1 for a full cross of 3 centre-years x 3 natural mortality vectors x 2 stock-recruitment relationships (two OMs are still being run) that cover the key hake assessment uncertainties included in the Reference Set, which is now updated (both in terms of changes in methodology and further years data) to 2017. Specifically the values for these uncertainty factors are:

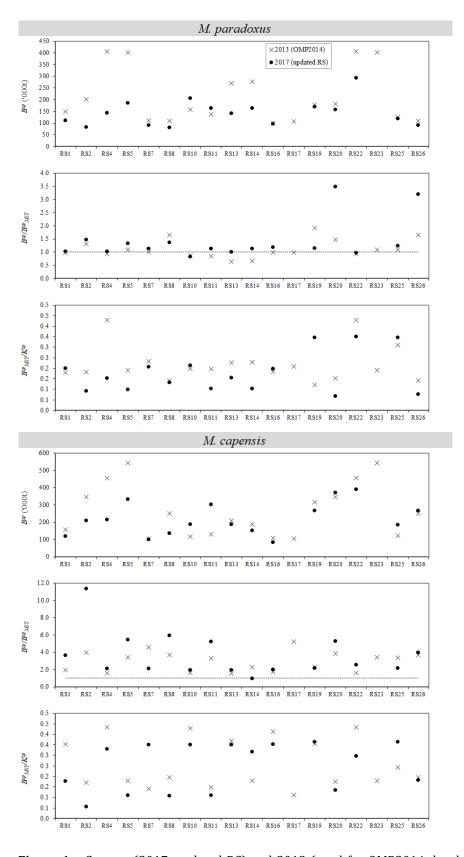
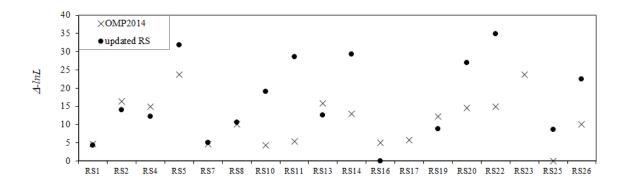
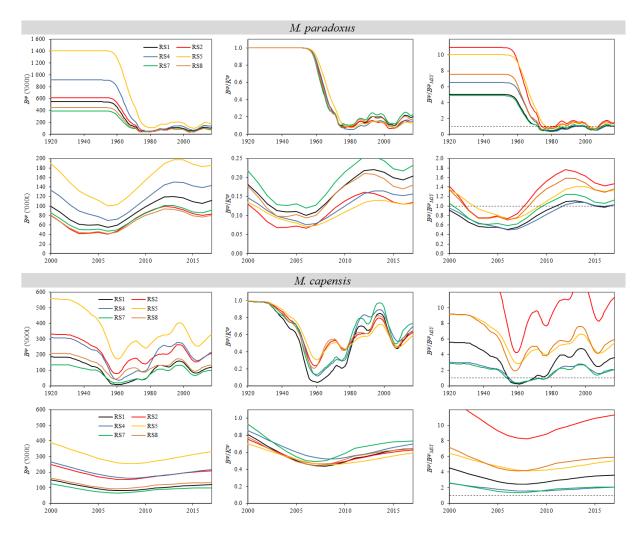

- Centre years for change from *M. capensis* to *M. paradoxus* dominance in catch: 1950, 1958 and 1965.
- Natural mortality vectors: "Mmed":  $M_{2-}=0.75$  and  $M_{5+}=0.375$ , "Mlow":  $M_{2-}=0.6$  and  $M_{5+}=0.25$  and "Mhigh":  $M_{2-}=0.9$  and  $M_{5+}=0.5$ .
- Stock-recruitment relations: "Ricker": modified Ricker and "BH": Beverton-Holt, h estimated

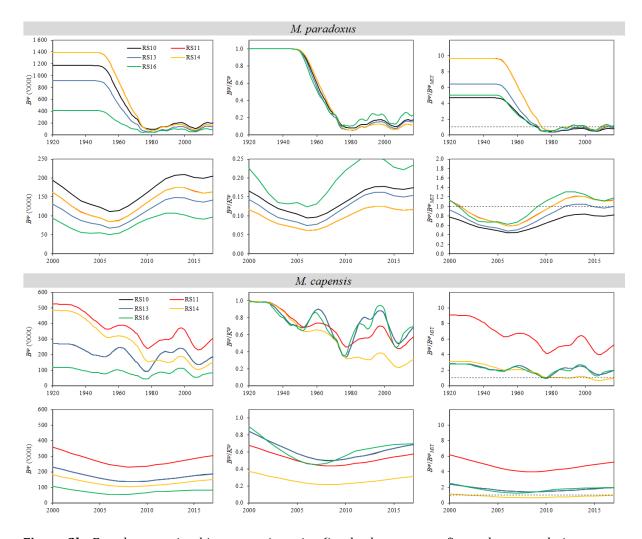
Figure 1 compares the current (2017) spawning biomass (in absolute terms and relative to  $B_{MSY}$ ) and  $B_{MSY}/K$  across the range of OMs, as well as the difference in the total negative log-likelihood ( $\Delta$ -lnL) from the best fitting OM. These are also compared to the equivalent estimates (2013 instead of 2017) used for developing the 2014 OMP. The corresponding updated spawning biomass trajectories plotted in Figures 2. Figure 3 plots the median and range (minimum and maximum) spawning biomass trajectories for the updated RS.


While  $B_{MSY}/K$  spans a wide range for M. paradoxus and particularly for M. capensis, for the former at least  $B_{2017}/B_{MSY}$  does now seem reasonably robustly estimated across the OMs (though with two exceptions). For the most part, patterns in  $\Delta$ -lnL across the OMs are maintained, though tending to be larger as to be expected given more data. Cases where  $\Delta$ -lnL increases appreciably are for RS14, RS22 and RS26 (all members of the previous final RS), and RS10, RS11 and RS20,

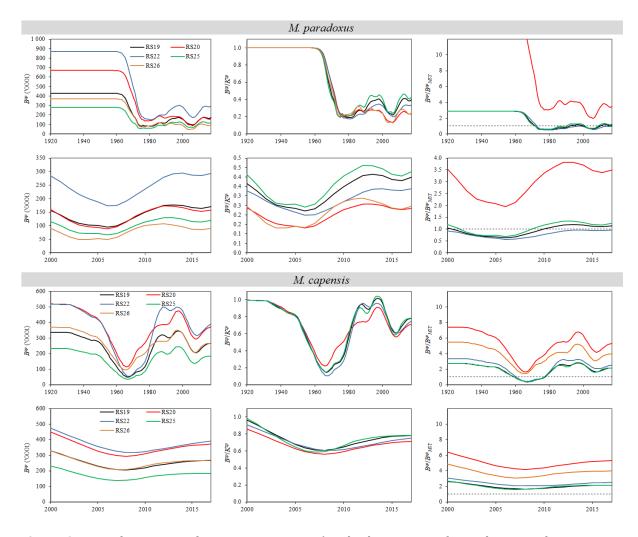
**Table 1**: Results for the updated RS. As the OM notation does not correspond to that used in document Hake/P9, the latter's notation has been included in the Table. The OMs that have a "Hake/P9 notation" were included in the final RS used in the development of OMP2014.


|              | Doc P9 notation                 | RS1     | RS2     |         |         |         |         |         |         | RS4     | RS5     | RS7     |       |         |         | RS10    |      | RS13    | RS14    |
|--------------|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|------|---------|---------|
|              |                                 | RS1     | RS2     | RS4     | RS5     | RS7     | RS8     | RS10    | RS11    | RS13    | RS14    | RS16    | RS17  | RS19    | RS20    | RS22    | RS23 | RS25    | RS26    |
|              |                                 | 1958    | 1958    | 1958    | 1958    | 1958    | 1958    | 1950    | 1950    | 1950    | 1950    | 1950    | 1950  | 1965    | 1965    | 1965    | 1965 | 1965    | 1965    |
|              |                                 | Mmed    | Mmed    | Mlow    | Mlow    | Mhigh   | Mhigh   | Mmed    | Mmed    | Mlow    | Mlow    | Mhigh   | Mhigh | Mmed    | Mmed    | Mlow    | Mlow | Mhigh   | Mhigh   |
|              |                                 | Ricker  | ВН      | Ricker  | ВН    | Ricker  | ВН      | Ricker  | ВН   | Ricker  | ВН      |
|              | Δ-InL during<br>OMP2014 testing | 4.7     | 16.3    | 14.9    | 23.6    | 4.6     | 10.1    | 4.3     | 5.4     | 15.8    | 13.0    | 5.0     | 5.8   | 12.1    | 14.6    | 14.9    | 23.6 | 0.0     | 10.1    |
|              | -InL total                      | -5244.1 | -5234.3 | -5236.2 | -5216.6 | -5243.3 | -5237.8 | -5229.3 | -5219.7 | -5235.8 | -5219.0 | -5248.3 |       | -5239.6 | -5221.3 | -5213.5 |      | -5239.7 | -5225.8 |
|              | $\Delta$ -lnL                   | 4.3     | 14.1    | 12.1    | 31.8    | 5.0     | 10.6    | 19.1    | 28.6    | 12.6    | 29.4    | 0.0     |       | 8.7     | 27.0    | 34.8    |      | 8.7     | 22.5    |
| M. paradoxus | K <sup>sp</sup>                 | 547     | 618     | 914     | 1406    | 394     | 448     | 1173    | 1393    | 915     | 1393    | 414     |       | 429     | 670     | 870     |      | 280     | 371     |
|              | B sp MSY                        | 109     | 56      | 140     | 140     | 81      | 59      | 250     | 144     | 142     | 144     | 82      |       | 149     | 45      | 304     |      | 97      | 28      |
|              | $B^{sp}_{MSY}/K^{sp}$           | 0.20    | 0.09    | 0.15    | 0.10    | 0.21    | 0.13    | 0.21    | 0.10    | 0.15    | 0.10    | 0.20    |       | 0.35    | 0.07    | 0.35    |      | 0.34    | 0.08    |
|              | B sp 2017                       | 112     | 83      | 143     | 185     | 91      | 81      | 205     | 163     | 142     | 163     | 97      |       | 171     | 158     | 294     |      | 120     | 91      |
|              | $B_{2017}^{sp}/K^{sp}$          | 0.20    | 0.13    | 0.16    | 0.13    | 0.23    | 0.18    | 0.18    | 0.12    | 0.15    | 0.12    | 0.23    |       | 0.40    | 0.24    | 0.34    |      | 0.43    | 0.25    |
|              | $B_{2017}^{sp}/B_{MSY}^{sp}$    | 1.03    | 1.47    | 1.02    | 1.32    | 1.13    | 1.36    | 0.82    | 1.14    | 1.00    | 1.13    | 1.19    |       | 1.15    | 3.49    | 0.96    |      | 1.24    | 3.20    |
|              | MSY                             | 141     | 141     | 150     | 146     | 142     | 141     | 149     | 146     | 150     | 146     | 139     |       | 139     | 144     | 148     |      | 140     | 155     |
| M. capensis  | K <sup>sp</sup>                 | 187     | 332     | 310     | 560     | 136     | 210     | 273     | 528     | 273     | 487     | 119     |       | 339     | 521     | 520     |      | 234     | 371     |
|              | B sp MSY                        | 33      | 18      | 103     | 61      | 48      | 23      | 96      | 58      | 96      | 154     | 42      |       | 124     | 70      | 154     |      | 85      | 67      |
|              | $B^{sp}_{MSY}/K^{sp}$           | 0.18    | 0.06    | 0.33    | 0.11    | 0.35    | 0.11    | 0.35    | 0.11    | 0.35    | 0.32    | 0.35    |       | 0.36    | 0.13    | 0.30    |      | 0.36    | 0.18    |
|              | B sp 2017                       | 120     | 209     | 216     | 332     | 100     | 134     | 187     | 304     | 188     | 151     | 83      |       | 267     | 372     | 391     |      | 184     | 268     |
|              | $B_{2017}^{sp}/K^{sp}$          | 0.64    | 0.63    | 0.70    | 0.59    | 0.73    | 0.64    | 0.69    | 0.58    | 0.69    | 0.31    | 0.70    |       | 0.79    | 0.71    | 0.75    |      | 0.78    | 0.72    |
|              | $B_{2017}^{sp}/B_{MSY}^{sp}$    | 3.62    | 11.33   | 2.10    | 5.45    | 2.09    | 5.92    | 1.96    | 5.25    | 1.96    | 0.98    | 1.98    |       | 2.16    | 5.30    | 2.54    |      | 2.15    | 3.98    |
|              | MSY                             | 79      | 93      | 71      | 74      | 84      | 111     | 65      | 70      | 65      | 39      | 72      |       | 117     | 127     | 108     |      | 123     | 136     |

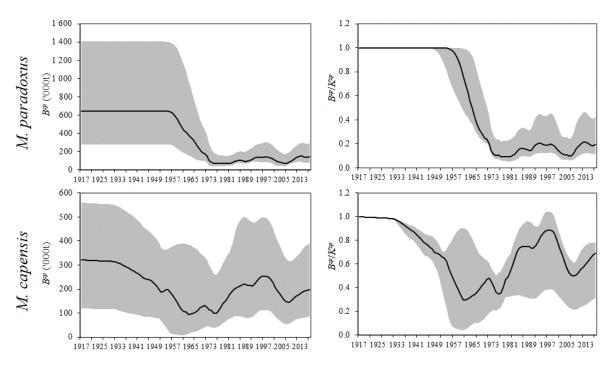



**Figure 1a**: Current (2017, updated RS) and 2013 (used for OMP2014 development) spawning biomass (in absolute terms and relative to  $B_{MSY}/K$  across the range of OMs.




**Figure 1b**:  $\Delta$ -lnL for the updated RS and for these OMs at the time OMP2014 was developed.




**Figure 2a**: Female spawning biomass trajectories (in absolute terms - first column -, relative to pre-exploitation level - second column - and relative to  $B_{MSY}$  - third column) for *M. paradoxus* and *M. capensis* for OMs with **1958** as the mid-change year. The second and fourth rows are the same as the first and third respectively, except for the horizontal axis covering only more recent years.



**Figure 2b**: Female spawning biomass trajectories (in absolute terms - first column -, relative to pre-exploitation level - second column - and relative to  $B_{MSY}$  - third column) for *M. paradoxus* and *M. capensis* for OMs with **1950** as the mid-change year. The second and fourth rows are the same as the first and third respectively, except for the horizontal axis covering only more recent years.



**Figure 2c**: Female spawning biomass trajectories (in absolute terms - first column -, relative to pre-exploitation level - second column - and relative to  $B_{MSY}$  - third column) for *M. paradoxus* and *M. capensis* for OMs with **1965** as the mid-change year. The second and fourth rows are the same as the first and third respectively, except for the horizontal axis covering only more recent years.



**Figure 3**: Median (black line) with minimum-maximum range (shading) spawning biomass trajectories (in absolute terms and relative to pre-exploitation level) for *M. paradoxus* and *M. capensis*, for the updated RS.