

Managing cluster resources with Torque
and Maui

Scheduling jobs with Torque and Maui

A resource manager is a suite of software that manages the resources on a computing cluster.
Such a cluster consists of a management node, one or more worker nodes and (at least) one
login node. Typically there is storage provided from the cluster from a storage server or storage
array – this is mounted via a network filesystem like NFS or GlusterFS.

To share the resources of the cluster jobs are submitted to the resource manager and the
research manager works with a scheduler to fairly allocate jobs to the worker nodes on the
cluster. In addition to the resource manager and scheduler, clusters require a shared filesystem
(often provided by NFS) and a shared set of users. This allows jobs to be run on any node,
because the view of storage and users is the same across the cluster. The cluster we build in this
session will use the Torque resource manager that works alongside the Maui scheduler.

Torque and Maui are maintained by a company called Adaptive Computing, but the versions that
we will be using are provided by the European Middleware Initiative (EMI), that provides a
software platform for high performance computing (HPC). To use the EMI software we first need
to enable the relevant software respositories, and prepare the Torque/Maui software, which can
be done with this script (that needs to be run as root):

#!/bin/bash

yum install -y wget libselinux-python yum-plugin-downloadonly yum-plugin-priorities

https://training.h3abionet.org/technical_workshop_2015/

echo "[software.vulnerability.group.fixes-sl-6-x86_64]

name=Repository for software.vulnerability.group.fixes (o/s: sl6 arch: x86_64)

baseurl=http://repository.egi.eu/community/software/software.vulnerability.group.fixes/torq

ue/releases/sl/6/x86_64/RPMS/

enabled=1

gpgcheck=0" >/etc/yum.repos.d/egi-vuln.repo

for reponame in base contribs third-party ; do

 wget -O /etc/yum.repos.d/emi3-${reponame}.repo -c

http://emisoft.web.cern.ch/emisoft/dist/EMI/3/repos/sl6/emi3-${reponame}.repo

done

rpm --import http://emisoft.web.cern.ch/emisoft/dist/EMI/3/RPM-GPG-KEY-emi

PRIORITIESCONF=/etc/yum/pluginconf.d/priorities.conf

grep 'check_obsoletes = 1' $PRIORITIESCONF

STATUS=$?

if [-e $PRIORITIESCONF -a $STATUS -ne 0] ; then

 echo 'check_obsoletes = 1' >> $PRIORITIESCONF

fi

yum install -y --downloadonly emi-torque-server emi-torque-client

This script is available in the training lab at http://train0.bi.up.ac.za/install_torque.sh. This can be
installed using the command:

wget -O - http://train0.bi.up.ac.za/install_torque.sh |sudo bash

(If you do not have wget available install it with yum install -y wget)

Once the script has finished running you can do the actual Torque/Maui install with:

sudo yum install -y emi-torque-server emi-torque-client

Torque and Maui configuration

Daemons, firewall and authentication

Torque makes use two daemons, pbs_server and pbs_mom. The pbs_server keeps track of
the state of resources and jobs on the cluster and pbs_mom manages jobs on an individual
worker node. Torque supports pluggable schedulers, so Maui interfaces with pbs_server to
provide scheduling (and is thus typically run on the same macine).

To enable communication between pbs_server, Maui and pbs_mom you need to open TCP
ports 15001 and 15003 on the cluster management server and port 150003 on the worker nodes.
If you have ferm installed you can configure the firewall with this ferm script:

chain INPUT {

 proto tcp dport (

 15003 15001

) ACCEPT;

}

The Torque server installed from EMI uses munged for authentication and thus this needs to be
configured on each node in the cluster. First install munged with:

sudo yum install -y munge

And then do the initial munged configuration:

sudo create-munge-key

This creates a key in /etc/munge/munge.key that needs to be copied to the same location on
each worker node. This file should be owned by user munge and group munge and mode 0600,
so that it shows up as:

-r--------. 1 munge munge 1024 Feb 7 17:29 munge.key

Once the munge key is created, you need to start the munge daemon with:

sudo service munge start

Torque configuration

Defining worker nodes and the management server

The file /var/spool/pbs/server_priv/nodes defines the worker nodes in the cluster. E.g. for a

cluster with 4 workers named worker1 to worker4 in domain example.com, each having 4 CPU
cores, it would contain:

worker1.example.com np=4

worker2.example.com np=4

worker3.example.com np=4

worker4.example.com np=4

The np specification species how many processors are available on each node. In our example,
however, we’re only going to have a single worker node, so make

a /var/spool/pbs/server_priv/nodes file containing something like:

train5.bi.up.ac.za np=3

Where train5 is replaced with the name of your computer and np=3 is specified so that only 3
processor cores are made available.

Then the pbs_mom daemons need to know where to find the pbs_server. If
your pbs_server was train6.bi.up.ac.za you’d put this in
the /var/spool/pbs/mom_priv/config file:

$pbsserver train6.bi.up.ac.za

Modify that line for your specific setup. Finally set the server name
in /var/spool/pbs/server_name to the name of the management server, e.g. if you are running

on train6 this file should contain:

train6.bi.up.ac.za

Initialising the pbs_server database

The Torque resource management server, pbs_server, manages a database tracking the state
of the cluster. To initialise the database, first stop the running pbs_server with

sudo service pbs_server stop

and then initialise a new database with:

sudo pbs_server -t create

By default the only user allowed to manager the Torque pbs_server is root on the manager host.
You can now add an user to manage the pbs_server and batch jobs with with qmgr command.
If the user is called myuser and will be working on master.example.com then use:

qmgr -c 'set server operators += myuser@master.example.com'

qmgr -c 'set server managers += myuser@master.example.com'

You can also use a host pattern to allow administration from more than a single host, e.g.:

qmgr -c 'set server operators += myuser@*.example.com'

qmgr -c 'set server managers += myuser@*.example.com'

This would give myuser permission to make changes from any host in the example.com domain.

One final example, for the user train5 on train5.bi.up.ac.za:

qmgr -c 'set server operators += train5@train5.bi.up.ac.za'

qmgr -c 'set server managers += train5@train5.bi.up.ac.za'

Note that the hostname that you specify must exist, either in DNS or in /etc/hosts.

Having set up the operator permissions, you can now do some other basic setup:

qmgr -c 'set server scheduling = true'

qmgr -c 'set server keep_completed = 300'

qmgr -c 'set server mom_job_sync = true'

And now create and set some default settings for a queue named batch:

qmgr -c 'create queue batch'

qmgr -c 'set queue batch queue_type = execution'

qmgr -c 'set queue batch started = true'

qmgr -c 'set queue batch enabled = true'

qmgr -c 'set queue batch resources_default.walltime = 1:00:00'

qmgr -c 'set queue batch resources_default.nodes = 1'

qmgr -c 'set server default_queue = batch'

This will create and enable the queue named batch and set some default resource limits. By
default jobs will use 1 processor and run for a maximum of 1 hour (1 hour of “wallclock” time).

Configuring the Maui scheduler

While pbs_server keeps track of the state of batch jobs, it doesn’t make decisions about when
they should run and which one should run first. The Maui scheduler communicates
with pbs_server and signals when jobs should run. It is configured
using /var/spool/maui/maui.cfg which looks like this:

Maui configuration example

@(#)Maui.cfg David Groep 20031015.1

for Maui version 3.2.5

SERVERHOST master.example.com

ADMIN1 root myuser

ADMINHOST master.example.com

RMCFG[0] TYPE=PBS

SERVERPORT 40559

SERVERMODE NORMAL

Set PBS server polling interval. Since we have many short jobs

and want fast turn-around, set this to 10 seconds (default: 2 minutes)

RMPOLLINTERVAL 00:00:10

a max. 10 MByte log file in a logical location

LOGFILE /var/log/maui.log

LOGFILEMAXSIZE 10000000

LOGLEVEL 3

The parameters in this file are explained in the Maui parameters documentation from Adaptive
Computing. SERVERHOST refers to the server where Maui is running, ADMIN1 is a space
separated list of users that are allowed to manage the Maui scheduler and ADMINHOST is the
name of the server from which they can manage the scheduler. The RMCFG[0] line specifies the
details of the resource manager that the scheduler communicates with. This is a list of key/value

pairs that are documented here.

Final steps and testing

After completing the installation restart the Torque/Maui services

sudo service pbs_server restart

sudo service pbs_mom restart

sudo service maui restart

Then make sure the daemons are started at boot time using:

sudo chkconfig --add munge

sudo chkconfig --add pbs_server

sudo chkconfig --add pbs_mom

sudo chkconfig --add maui

At this point you should be able to run qstat, which will return with no output. Test your new
installation by submitting a simple job:

echo 'echo Hello World' | qsub

This will submit the command echo Hello World to the default job queue. You should see

output similar to:

$ echo 'echo Hello World' |qsub

0.train6

http://docs.adaptivecomputing.com/Maui/a.fparameters.php
http://docs.adaptivecomputing.com/Maui/13.2rmconfiguration.php

This means that your job has been submitted as job 0.train6. If you now run qstat you will see

something like:

$ qstat

Job ID Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

0.train6 STDIN pvh 0 C batch

This shows that your job has run. It will put output in home directory in files
named STDIN.o0 and STDIN.e0 for the stderr and stdout of your job respectively. Note that in

order to produce this output the node where the job runs must be able to copy files to the node
where the job was submitted. This is typically done by allowing key-based passwordless ssh
access between all nodes in the cluster.

