
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Wits Bioinformatics

Puppet Configuration

Scott Hazelhurst
University of the Witwatersrand

February 2015

1 Introduction to Puppet

Configuration management

• Document server setup

• Deploy and manage multiple computers

Philosophy of Puppet:

• Specify what the system must look like

• Puppet takes care of rest

Can be heterogeneous

Master-client architecture

agents/clients

6 6 6 6 6

master

The master may be an agent too – quite common.

2 Installing Puppet

Puppet is under development – Puppet 3 most common now but Puppet 2 still widely used (e.g. default
epel distribution). Puppet 4 soon. Good idea to use the Puppet Labs installation guide.

• Puppet Master must be a nix machine

• Agents can be nix or Windows

• Each machine must have DNS entry or in /etc/hosts file

• Good to have ntp running

Next do install.
1

First install on master:

rpm -ivh http://yum.puppetlabs.com/puppetlabs-release-el-6.noarch.rpm

yum install puppet-server

Now check that DNS entries are set up

• Check your host name hostname -f

• Then check DNS entry and reverse lookup (assume your name is x.y.z and IP address a.b.c.d

nslookup x.y.z

nslookup a.b.c.d

If can’t or don’t want to use DNS, you can set up your /etc/hosts file. In fact, in our cluster we have a
common /etc/hosts file that is distributed across all the machines.

Choose a reasonable and appropriate name and put in the /etc/hostname file

test.bioinf.wits.ac.za

Then add an entry to the /etc/hosts file with your IP address

192.168.19.237 test.bioinf.wits.ac.za

Generate master certificate
Puppet uses certificates for master and agents to identify themselves.

• Master acts as certificate authority

puppet master --verbose --no-daemonize

You should should get messages like:

Info: Creating a new SSL key for ca

Info: Creating a new SSL certificate request for ca

Info: Certificate Request fingerprint (SHA256): 4A:1D:B6:D1:CA:FB:9A:D7:76:9C:A0:C1:10:A0:E6:68:0B:A6:6B:26:82:49:AE:4E:82:10:D5:9C:16:97:A2:83

Notice: Signed certificate request for ca

Info: Creating a new certificate revocation list

Info: Creating a new SSL key for test.bioinf.wits.ac.za

Info: csr_attributes file loading from /etc/puppet/csr_attributes.yaml

Info: Creating a new SSL certificate request for test.bioinf.wits.ac.za

Info: Certificate Request fingerprint (SHA256): C1:86:33:81:46:2B:03:B1:38:72:1A:89:D3:0E:C8:CC:BB:E1:2E:09:65:A9:71:F3:BC:34:A8:0D:F3:13:19:02

Notice: test.bioinf.wits.ac.za has a waiting certificate request

Notice: Signed certificate request for test.bioinf.wits.ac.za

Notice: Removing file Puppet::SSL::CertificateRequest test.bioinf.wits.ac.za at ’/var/lib/puppet/ssl/ca/requests/test.bioinf.wits.ac.za.pem’

Notice: Removing file Puppet::SSL::CertificateRequest test.bioinf.wits.ac.za at ’/var/lib/puppet/ssl/certificate_requests/test.bioinf.wits.ac.za.pem’

Notice: Starting Puppet master version 3.7.4

2

Public health warning: x Certificates are kept in /var/lib/puppet/ssl Although undesirable you
may need to manually clean up, if you make a mistake.

Once done you can C-c, and re-run, this time as a daemon. In a production environment, may not want
verbose option except when debugging.

puppet master --verbose

Web server
The puppet master uses a web server to provide configuration and data to agents.

• Built-in server – can only cope with small load.

• Need to add modules for support with Apache.

What you do depends on configuration and size of cluster.

In our installation we have about 20 machines under puppet configuration, and we only do agent-initiated
updates. Since there are seldom concurrent updates, the built-in server is fine. It is not too difficult to
configure Apache for this but in the short time we have in this course, we can’t fit in in.

2.1 Configuring the puppet

On the agent, the puppet has root privileges.

• Install puppet: yum -y install puppet

• Edit puppet.conf:

server = FQDN OF YOUR SERVER

daemonize = false

Double check: copy the server name in your puppet.conf file and make paste into terminal. Make sure
that you can ssh into the machine.

Check that ports are open

yum -y install nmap

nmap -p 22,8140 SERVERFQDN

Get certificate for agent

puppet agent --onetime

Sends message to master for a certificate. You should now get a message like

• Exiting; no certificate found and waitforcert is disabled

3

On master, look for the certificate request

puppet cert list

To see all certificates

puppet cert list --all

Sign the request (use your agent)

puppet sign AGENTFQDN

On agent/client

puppet agent --onetime --verbose

Response like this: all good – nothing done because the master doesn’t have any work for us.

Info: Retrieving pluginfacts

Info: Retrieving plugin

Info: Caching catalog for newsl.bioinf.wits.ac.za

Info: Applying configuration version ’1423408597’

Info: Creating state file /var/lib/puppet/state/state.yaml

Notice: Finished catalog run in 0.03 seconds

That’s it – all configuration done

Running puppet
Many ways of running Puppet – depends on sophistication and size of systems

• Can initiate from the master

• Run a service on the clients that periodically request

• cron jobs on the clients

• explicitly call from the clients – what we do now

3 The Puppet Language : First Steps

First steps in Puppet
Puppet based on Ruby:

• Each node is a member of a class which describes what resources it should have.

• Classes may be hierarchical

• It is extensible

• Can cope with mixed agents
4

• Goal is to be declarative

Worker

Linux

Ubuntu SL

Store
others

Manifests
The Puppet configuration is stored in /etc/puppet/manifests

• site.pp – main class: imports others.

• Organise rest of directory logically for you

Can have sub-directories

site.pp nodes.pp users.pp

users/ groups/ classes/

• Make directories: mkdir users classes

• Create site.pp

import "classes/worker.pp"

import "nodes.pp"

Create classes/worker.pp
Class to describe most machines in the cluster

class workcomp {

file{sysconf:

name => "/opt/sysconfig",

ensure=> directory

}

}
5

/etc/puppet/manifests
site.pp

Probably a good idea:

• One class per file (but can have exceptions)

• Main class has same name as file

• Have consistent naming convention.

Create nodes.pp
Each machine has an entry (use your FQDN)

node ’XX.XX.XX.XX’{

include workcomp

}

Note:

• we can add specific things about this node when we need to.

• the FQDN of each node must be DNS resolvable

• Puppet syntax: difference between import and include.

– import : file – tell Puppet that this file is part of the installation

– include : class – tell Puppet that one class includes another class – subclassing.

Run puppet on the machine

puppet agent --onetime --verbose

Info: Retrieving pluginfacts
Info: Retrieving plugin
Info: Caching catalog for test.bioinf.wits.ac.za
Info: Applying configuration version ’1423412619’
Notice: /Stage[main]/Workcomp/File[sysconf]/ensure: created
Notice: Finished catalog run in 0.03 seconds

• Check the state of the /opt/ directory

• What if we run the command again?

4 Puppet resources

Overview of Puppet resources
Puppet class file mainly consist of list of resources for nodes

• each major resource (e.g., file, package, mount, etc) has a counter-part in Puppet

• (mainly) declarative

• no ordering
6

4.1 Files

Used for directories, files, symbolic links

file{symlink:

name => "/root/sysconfig", #link

ensure=> link,

target=> "/opt/sysconfig" #src

}

Files can easily be distributed using puppet. On my puppet master I have a directory /etc/puppet/

sources in which I put files that clients need. Let’s see an example

Create a source file

mkdir /etc/puppet/sources

and create a file worker-fwrules

#!/bin/bash

echo "Stay out naught people! ‘date‘" >> /var/log/fw.log

Now we put in a Puppet rule to distribute this file to clients

In the worker.pp file

file {firewallrule:

name => "/opt/sysconfig/fwrules",

content => file("/etc/puppet/sources/worker-fwrules"),

owner => "root",

group => "root",

mode => 770

}

Now run and check (on the client)

puppet agent --onetime --verbose

cat /opt/sysconfig/fwrules

/opt/sysconfig/fwrules

cat /var/log/fw.log

7

/etc/puppet/sources
/etc/puppet/sources

Now run and check (on the client)

puppet agent --onetime --verbose

Nothing changes – already done.

• Now fix spelling error, and rerun puppet agent

• Rerun puppet agent again

• Delete the /opt/sysconfig/fwrules file

• Rerun puppet

Summary is that Puppet keeps the client state in accordance with the manifest. If the source file on the
master changes, or the target file on the client changes or is deleted, the master is copied to the client.

4.2 Packages

Packages

package { ’xfig’:

ensure => installed

}

$vippkgs = ["ntp","emacs", "gnuplot","httpd"]

package {

$vippkgs:

ensure => installed

}

Note that the name field can be omitted – takes the id of the clause as a value.
Note that Puppet supports multiple systems – so a package clause gets translated to apt-get on Ubuntu

and yum on SL.

4.3 Services

Services can be configured too.

• Show example together with general features for dependencies.

Make a fake valuable config file

• cp /etc/httpd/conf/httpd.conf /etc/puppet/sources

file {"/etc/httpd/conf/httpd.conf":

content => file("/etc/puppet/sources/httpd.conf"),

owner => "root", group => "root",

mode => 640

}

service { ’httpd’:

ensure => running,

require => Package[’httpd’],

subscribe => File[’/etc/httpd/conf/httpd.conf’],

}
8

4.4 Mounts

In shell

losetup /dev/loop0 /space/dsk0

mkfs.ext4 /dev/loop0

mount { "/media":

atboot => true,

fstype => ext4,

ensure => present,

options => ’rw,noauto’,

device => "/dev/loop0",

}

mount { share-nfs:

name => "/share",

atboot => true,

fstype => nfs,

ensure => present,

options => ’rw,noauto’,

device => "$storagehome:/partition_a_1/gg",

require => [Package[nfs-utils],File[share-gluster-dir]]

}

4.5 User and group management

Key requirement

• Alternative to LDAP, etc

Example of a virtual resource

• affects any non-trivial installation

Virtual resource
Resources can only be realised in one place

• Suppose you have Ubuntu and SL machines and want common users on both

• Need to include in both classes.

Solution is virtual resource:

• Tag users, groups as virtual

• import whenever needed

• realize in one place

9

Directory structure
/etc/puppet/manifests

• users.pp – does the realisation

• users/

– allusers.pp

• groups/

– primarygroups.pp

– othergroups.pp

Declaring users
In allusers.pp file.

@user { "peter" :

home => "/home/peter",

uid => "2000", gid => "2000",

comment => "Peter van Heusden",

shell => "/bin/bash",

managehome => $isfileserver,

require => Group["peter","protein","dna"],

groups => ["protein","dna"],

ensure => present

}

managehome – example of parameterising
We want different behaviour on different machines

• file server — yes, we want the directory created

• other machines — no, will NFS mount the entire /home directory

So in real application: set $isfileserver = false for workers, true for the file server
But here we want it managed

NB: in our simple example, we’re not NFS mounting. So purpose is to show you tagging.

At top of allusers.pp file

if tagged(fileserver) {

$isfileserver=true

} else {

$isfileserver=false

}

10

At bottom of allusers.pp file

@user { "mohammed" :

home => "/home/mohammed",

uid => "2001", gid => "2001",

comment => "Mohammed Alibi",

shell => "/bin/bash",

managehome => $isfileserver,

require => Group["mohammed","dna","rna"],

groups => ["protein","dna","rna"],

ensure => present

}

And for tomorrow’s exercise:

At bottom of allusers.pp file

@user { "worker" :

home => "/usr/local/worker",

uid => "2003", gid => "2003",

comment => "Worker User",

shell => "/bin/bash",

managehome => true,

ensure => present

}

Group management
Must create both primary and other groups

• groups/primarygroups.pp

• groups/othergoups.pp

class virt_groups {

@group { "peter" :

gid => "2000",ensure => present

}

@group { "mohammed" :

gid => "2001",

ensure => present

}

}

class othergroups {

@group { "protein" :
11

gid => "1500", ensure => present

}

@group { "rna" :

gid => "1501", ensure => present

}

@group { "dna" :

gid => "1502", ensure => present

}

}

Tell workers about users/groups – near top of workcomp in worker.pp

tag(fileserver)

include users

Now create the users.pp file

class users {

include virt_groups

include virt_users

include othergroups

$userids = ["peter","mohammed"]

$othergroups = ["protein","dna","rna"]

realize [Group[$userids],Group[$othergroups]]

realize User[$userids]

}

4.6 cron

cron { fwrefresh:

command => "/opt/sysconfig/fwrule",

user => root,

hour => [6,14,20],

minute => 1

require => File[firewallrules]

}

You can check that this works by doing

crontab -l

Read the message you get and take it to heart. Ideally once you are managing a resource with Puppet,
only manage it with puppet

4.7 The Exec resource

Allows execution of arbitrary fragments of code:

• Will be more OS specific – Puppet can’t help
12

• May not be idempotent

Could do unnecessary work

May get warnings

Could do the wrong thing (what if dd)

• When should it be done

exec { helloworld :

command => "echo "hello world" >> /var/log/puppet.log

}

The other examples are for illustration – you can’t do

exec { unzipdata :

command => "unzip /nfs/archivesequences.zip",

cwd => "/data",

path => ["/usr/bin"],

require => [Mount[nfs-mount]]

}

exec{numtables:

command => "python setup.py install",

cwd => "/opt/exp_soft/src/tables-2.4.0",

path => ["/bin","/usr/bin"],

onlyif =>

"test -z ‘ls /usr/lib64/python2.6/site-packages/tables-2.4.0-py2.6.egg-info‘ ",

require => [Package["Cython","python-rpyc","hdf5-devel","lzo","lzo-devel"],Exec["numexpr"]],

}

Or better

exec{numtables:

command => "python setup.py install",

cwd => "/opt/exp_soft/src/tables-2.4.0",

path => ["/bin","/usr/bin"],

creates =>"/usr/lib64/python2.6/site-packages/tables-2.4.0-py2.6.egg-info‘ ",

require => [Package["Cython","python-rpyc","hdf5-devel","lzo","lzo-devel"],Exec["numexpr"]],

}

There’s also refreshonly and subscribe.

Other resources
Many and extensible

• computer (MacOS X)

• filebucket

• interface
13

5 Integration with facter

facter is a package which provides information about the system

• Run facter

• Any fact is available as a variable

Can tailor installation according to facts

notify

notify {

"$hostname has $physicalprocessorcount cpus":

}

case $operatingsystem {

"redhat", "Scientific" : {

$bpkgs = [’nagios-plugins-all’,’nfs-utils’] }

ubuntu, Ubuntu: {

$bpkgs = [’nagios-plugins’,’nfs-common’] }

}

package { $bpkgs :

ensure => installed

}

14

	Introduction to Puppet
	Installing Puppet
	Configuring the puppet

	The Puppet Language : First Steps
	Puppet resources
	Files
	Packages
	Services
	Mounts
	User and group management
	cron
	The Exec resource

	Integration with facter

