
UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG

Wits Bioinformatics/H3A Bionet

Population Structure Tutorial

Wits H3A Bionet

April 2014

1 Setup

1. In this exercise we use the following standard programs

• eigenstrat
• admixture
• CLUMPP
• distruct

2. We will also use Wits wrapper scripts

• runpca (bash shell)
• popifyfam.py
• evec2gp.py
• cdg.py

and a Java application Genesis.java with a wrapper script

3. Download the file \http://www.bioinf.wits.ac.za/courses/gwas/pop.tar.gz

Then

tar -xzf pop.tar.gz

All files will be in the pop directory. Move into the directory and say

sudo make install

4. You need to use the following data

• The ALL.{bed,bim,fam} files.
• group1.phe, group2.phe

Make sure you understand this data.

5. Note that before running any population structure programs, data should be pruned so
that remaining SNPs are not in LD with each other. For time reasons we don’t do this
now. However, this is a very small data set and you’ll see the structure is not good – the
results are not realistic.

6. Try to run gnuplot. If not install it

apt-get install gnuplot-x11

1



2 PCA – Eigenstrat

1. Run Eigenstrat:

smartpca.perl -i ALL.bed -a ALL.bim -b new.fam \

-p ALL.pca -e ALL.eval -o ALL.pca \

-q NO -l ALL.log

2. This performs the PCA and produces several output files

• ALL.log — the log file – read it and understand it

• ALL.eval – the eigenvalues (look at it)

3. The most important one is the file with the ALL.pca.evec file.

(a) The first line, commented. This the eigenvalues of the corresponding eigenvec-
tors. Essentially these show the relative weightings of the corresponding principal
components.

(b) The remaining lines give, for each, individual their eigenvector, which we can
interpret as a point in a high-dimensional space. Typically, we select a few of
the dimensions for display. Commonly we look at PC 1 and PC 2, which are the
first two columns but it may be necessary to display others to see more subtle
population structure

4. If everything went well, you should have a PDF file called ALL.pca.pdf. View it.

5. Which PCs are significant? The twstats program is used. It takes as input your eval file
and a file called twtable. This is a standard file distributed with EIGENSTRAT and is
included here for convenience.

twstats -t twtable -i ALL.eval

Which eigenvectors are significant?

6. For some analyses and for drawing, we need to have the populations specified. Eigen-
strat takes this from the fam file, but in practice often the fam file either has case/control/qt
information or is missing. Also, you may wish to use different “population” labels at dif-
ferent times – in a realistic analysis you may wish to compare cases versus controls, and
samples that were done in different batches as well as the population label.

We have a script called popifyfam.py that creates a new fam file.

Here is how you would run it. It matches information in the given phe file with the
people mentioned in the ALL.fam file. You can specify which column of the phe file
should be used. You can also specify what the new fam file should be called (if you
don’t specify an output file, output goes to standard output).

popifyfam.py -h

popifyfam.py --popfname group2.phe --popcol 3 --output new.fam ALL.fam

2



7. Now we rerun our analysis. But now we can’t use the helper script because the fam file
has a completely different name.

smartpca.perl -i ALL.bed -a ALL.bim -b new.fam \

-p ALL.pca -e ALL.eval -o ALL.pca \

-q NO -l ALL.log

8. View the PDF that was created.

9. Read the log file carefully.

10. Run the Genesis program: genesis

Information and updates can be found at http://www.bioinf.wits.ac.za/software/
genesis/

This program is under development – come back soon!

11. Choose the PCA option and load ALL.pca.evec with group2.phe. Choose column 4.

• Show different PCs
• Change colours
• Change labels, fonts
• Find NA21525
• Who is the leftmost individual?
• Change to column 4 as the phenotype.
• Hide the Tuscans (TSI) from the graph.
• Export as PDF

12. Repeat the exercises above for the comm- data set, using the comm.phe file. I suggest
you popify first – as the smartpca will take about 5 minutes to run.

Extra exercises

13. The rest of this section is for you to come back at the end of the day. It is an alternative
to using genesis

14. Using the evec2gp program

python evec2gp.py --phe group1.phe ALL.pca.evec

This takes the vectors produced which give “objective” evidence of population structure
plus evidence we give based on ascribed membership.

It produces a gnuplot program.

gnuplot ALL.gp

15. To produce a Postscript and PDF files, you do the following

python evec2gp.py --gp-term postscript --epstopdf --gp-output ALL.eps \

--phe group1.phe ALL.pca.evec

gnuplot ALL.gp

3



3 Admixture

1. Run admixture

admixture ALL.bed 4

2. This produces a .Q file that contains estimates for each person and a .P file that contains
estimates for each SNP. Look at the data and understand it.

Also read the output that gets produced during and at the end of the run. . . What
useful information is there?

3. Now, use the admixture --cv option to estimate which is the best value of K to use for
this data. Having seen the PCA of the data, are you surprised?

4. Viewing admixture For these exercises, we’ll use the small data set. We’ve already
computed the small.*.Q files for various k values. Look at the phe file so that you
understand what phenotypes are stored.

5. Run genesis using small.4.Q, small.fam and small.phe and a phenotype column of your
choice.

(a) Inspect the results.

(b) Change the order of the populations

(c) Change the colour of some of the populations. Find the individual 2477 NA20301.

(d) Show the chart vertically.

(e) Now add the small.2.Q and small.5.Q charts.

(f) Reorder the charts so that you have them in the order 2, 4, 5.

(g) Colour the charts consistently.

(h) Add some labels.

(i) Export to PDF.

4 CLUMPP

First, we run admixture several times and then run CLUMPP.

1. The runadmix.sh script automates the process of running admixture. It’s written in the
bash shell language. Read through it to make sure you understand it. With automation
comes great power, but also great power to to silly things! Why do we say -s time?

2. Modify the script so that it uses the ALL.bed file, and we have k values ranging from 2
to 4, and using 5 runs.

3. Run the script thus1: ./runadmix.sh
1Linux revision: why do we say ./runadmix.sh? Why put the “./”? Remember that “.” means the current

directory. When you run a command, Un*x looks in your PATH directories for the program you want to run.
However, it is considered good practice not to have the current working directory on your path. So scripts or
programs that are in your current working directory will not be found. Hence, we tell the system where the script
will be found – in the current working direcory.

4



4. This example gives a grossly misleading impression of how long it takes to do this. On
real data set, you may take many hours or even days for this to run and it would be
desirable to parallelise on a computer cluster.

5. Inspect the output and make sure you understand it.

6. Before running CLUMPP, we need to create the input for it and an appropriate paramfile.
So we run cdg and then CLUMPP. Revise the overview in the notes.

7. We run the cdg script

cdg.py -K 2 --glob "[0-9]*/" \

--output all-2 --par_clumpp ALL

8. Inspect the paramfile that has been created – make sure you understand the key options.
The important values are

(a) DATATYPE should be 0

(b) INDFILE the input file – should contain output of several admixture calls.

(c) OUTFILE output file

(d) MISCFILE log file – output file

(e) K the number of clusters

(f) C the number of individuals

(g) R number of runs (number of data sets in the INDFILE)

(h) M : method to be used 1, 2 or 3. From most accurate and expensive to least
accurate and cheapest.

(i) GREEDY OPTION If you use 1 or 2 above, choose 2.

9. Run CLUMPP it takes the paramfile as input. CLUMPP

10. Identify and inspect the output file.

11. View the output file in Genesis.

5 Repetition

Repeat the exercises above with comm-SYMCL.

6 The cdg.py script

1. A manual is available

2. A helper script that creates the necessary things for CLUMPP and distruct.

python cdg.py -K 4 --glob "[0-2]/" --popfname group1.phe

--par_clumpp --doclumpp ALL

5



This says look in the directories 0, 1, 2 for files named ALL.4.Q and use those as input
to clumpp, and use the group1.phe file as population description. Typically you might
have 100 runs.

3. The key output file is ALL.outfile which summarises result.

4. Now we can run distruct

python cdg.py -K 4 --glob "[0-2]/" --popfname group1.phe \

--par_distruct --dodistruct --outputps ALL-admixture ALL

7 Distruct

1. You can download and install from http://www.stanford.edu/group/rosenberglab/

distruct.html

2. DISTRUCT takes output from CLUMPP (or other programme) and some auxiliary files
and creates very high quality pictures. It takes one file as input drawparams. These are
the key values to change

(a) INFILE POPQ – for each (external) population average ancestry from ancestral
populations

(b) INFILE INDIVQ – describes each individual

(c) INFILE LABEL BELOW – a file that contains a list like this

5 YRI

7 LWK

9 MKK

12 SABS

2 HADZA

13 CHB

4 CHD

10 SAN

1 IMM

3 CEU

11 SANDAWE

6 JPT

8 GIH

(d) INFILE CLUST PERM a file with the colours you want to use

1 orange

2 blue

3 yellow

4 green

5 light_purple

(e) OUTFILE the name of the output file (it’s a PostScript file)

6



(f) K number of clusters

(g) NUMPOPS number of pre-defined populations

(h) NUMINDS number of individuals

7


