Data required for an updated assessment of the South African kingklip resource in 2022

A. Brandão and D.S. Butterworth

Marine Resource Assessment and Management Group (MARAM)

Department of Mathematics and Applied Mathematics,

University of Cape Town, Rondebosch 7701, Cape Town

April 2022

Abstract

This paper lists the data that are presently available, and data that are still required, for an updated assessment of the South African kingklip resource.

Keywords: kingklip; data requirements

Data: available already and needed

This paper sets out the data that are presently available and data that are still required for an update of the assessment analyses for the South African kingklip resource (the most recent assessments for this report are provided in Brandão (2017); these assessments were based on ASPM models). Tables with the available data are given to check that any recent data updates have been taken into account.

• Annual Catch Data (Table 1)

Total annual catches of kingklip for the West and South coasts from hake-directed trawls over the period 1932–2019, and from hake-directed longlining for the periods 1983–2019, are available. Data for 2020 (updated to include all data) and 2021 are needed.

Survey abundance estimates (Table 2)

Survey abundance data for each of the West and South coasts by season are available. For the West coast, data are available until 2020 for the Summer surveys and until 1990 for the Winter surveys. For the South coast, data are available until 2021 for the Autumn survey and until 2008 for the Spring survey. Survey abundance indices for 2021 (if any other survey took place) and for the first half of 2022 are needed.

Survey catch-at-length data

Survey catch-at-length data for each coast are available for most of the years in which a survey was carried out. For the West coast data are available until 2017 (Summer). For the South coast data are available until 2016 for the Autumn and Spring surveys. Survey catch-at-length data for surveys undertaken in the period 2016/2017 and subsequent years are needed; however, to ensure that the latest version (especially of the earlier period) is used in the assessment, it is requested that survey catch-at-length for all surveys be provided.

• Commercial/observer catch-at-length data

Previously the following catch-at-length data had been provided:

- Observer commercial catch-at-length data disaggregated by coast and fishery, in the main from 2000 to 2010 for the longline fishery.
- Land based catch-at-length data for the trawl fishery from 2005 to 2015 for the West coast, and in 2001 and from 2008 to 2015 for the South coast.

However, recently observer CAL data was provided by Dave Japp for both the longline and the trawl fisheries. These data need to be considered together with what was previously available, and scaled in the same manner. Therefore, commercial catch-at-length data disaggregated by coast and fishery for all years for which data are available need to be provided anew. Additionally, any historical commercial catch-at-length data prior to 2000 are needed if available.

• **CPUE data** (Table 3)

Coast disaggregated CPUE abundance data for the years 1983 to 1991 for the trawl and longline fisheries are available from Punt and Japp (1994). Might these historical CPUE series be revised and/or updated? CPUE series for some years from 1991 to 2021 are desirably provided; furthermore, a decision is needed as to whether inclusion of these CPUE data in the assessment is acceptable.

Table 4 gives the biological parameters values which have been as used in previous analyses (obtained from Punt and Japp, 1994). This Table is provided here to check that the information is still applicable and has not been updated.

Reference

Brandão, A. 2017. Updated assessment of the South African kingklip resource that includes catch-at-length data for the one-stock and two-stock hypotheses. DFFE Fisheries document: FISHERIES/2017/JUL/SWG-DEM/20.

Punt, A.E. and Japp, D.W. 1994. Stock assessment of the kingklip *Genypterus capensis* off South Africa. *S.Afr.J.mar.Sci.* 14: 133–149.

Table 1. Annual catches (in tonness) of kingklip taken by the trawl and longline fisheries on the West and South coasts of South Africa.

Year	West coast		South coast		.,	West coast		South coast	
	Trawl	Longline	Trawl	Longline	Year	Trawl	Longline	Trawl	Longline
1932	436	0	164	0	1977	1 953	0	737	0
1933	290	0	110	0	1978	2 551	0	1 759	0
1934	290	0	110	0	1979	3 080	0	1 532	0
1935	508	0	192	0	1980	4 415	0	878	0
1936	508	0	192	0	1981	3 149	0	963	0
1937	508	0	192	0	1982	2 410	0	721	0
1938	508	0	192	0	1983	2 246	842	1 169	200
1939	508	0	192	0	1984	2 558	1881	1 034	1159
1940	508	0	192	0	1985	1 750	1314	1 650	5656
1941	436	0	164	0	1986	2 287	1231	399	7453
1942	436	0	164	0	1987	2 083	1948	392	4504
1943	436	0	164	0	1988	1 519	2091	408	3311
1944	436	0	164	0	1989	1 407	1607	223	2209
1945	944	0	356	0	1990	1 002	557	266	708
1946	726	0	274	0	1991	1 271	0	680	0
1947	798	0	302	0	1992	1 884	0	676	0
1948	1 089	0	411	0	1993	2 207	0	884	0
1949	1 307	0	493	0	1994	1 445	92	1 560	48
1950	1 379	0	521	0	1995	1 863	65	1 275	48
1951	1 742	0	658 768	0	1996 1997	1 596	170	1 981	60
1952	2 032			0		1 972	155	2 128	120
1953 1954	1 960 1 452	0	740 548	0	1998 1999	1 632 2 104	53 141	1 366 1 737	87 171
1955	1 669	0	631	0	2000	2 104	199	1 540	103
1956	1 452	0	548	0	2001	2 554	183	2 330	57
1957	1 089	0	411	0	2002	2 372	312	2 653	202
1958	1 234	0	466	0	2003	1 820	317	2 484	160
1959	1 452	0	548	0	2004	1 878	266	2 417	141
1960	1 089	0	411	0	2005	1 712	255	1 885	121
1961	1 524	0	576	0	2006	1 483	110	1 283	127
1962	1 234	0	466	0	2007	1 235	105	1 233	85
1963	1 307	0	493	0	2008	1 092	83	1 409	118
1964	1 016	0	384	0	2009	1 185	138	1 010	140
1965	1 815	0	685	0	2010	1 415	199	1 108	149
1966	2 686	0	1 014	0	2011	1 649	212	1 006	126
1967	2 323	0	877	0	2012	1 855	270	1 284	112
1968	2 105	0	795	0	2013	1 763	281	2 023	84
1969	2 105	0	795	0	2014	1 511	327	1 595	25
1970	2 105	0	795	0	2015	1 604	335	1 444	28
1971	3 557	0	1 343	0	2016	1 497	414	1 428	21
1972	3 774	0	1 426	0	2017	1 085	297	1 412	2
1973	4 210	0	1 590	0	2018	969	270	1 231	2
1974	2 532	0	956	0	2019	1 231	253	1 278	14
1975	2 600	0	982	0	2020††	1 026	235	432	12
1976	2 519	0	952	0	2021†				

^{††} Some catch data records for 2020 were outstanding, so these values need to be updated.

[†] Catches required.

Table 2. Abundance indices of kingklip (in tonnes) together with CVs obtained from surveys (separated by season) on the West and South coasts of South Africa. Values in bold denote biomass estimates obtained using the new rather than the old gear on *Africana*, while italicised values denote biomass estimates obtained from surveys carried out on an industry vessel. (Source: McGahey and Somhlaba, pers. comm.)

		West	coast		South coast				
Year	Jan/Feb (su	ummer)	Jul/Aug (winter)		Sep/Oct (spring) (0 – 200 m)		May/Jun (autumn) (0 – 500 m)		
	Index	CV	Index	CV	Index	CV	Index	CV	
1985	8 176	0.140	5 803	0.343	_	_	_	_	
1986	3 770	0.161	2 650	0.156	2 780	0.239	_	_	
1987	2 874	0.192	5 352	0.244	3 416	0.182	_	_	
1988	5 627	0.208	1 687	0.247	_	_	6 478	0.455	
1989	_	_	1 089	0.340	_	_	_	_	
1990	4 079	0.265	1 333	0.458	1 098	0.354	_	_	
1991	3 537	0.300	_	_	2 138	0.274	7 499	0.146	
1992	7 703	0.187	_	_	1 704	0.216	3 064	0.399	
1993	10 366	0.186			1 135	0.201	8 759	0.393	
1994	8 294	0.179			1 133	0.276	34 989	0.664	
1995	7 505	0.257			1 152	0.427	20 623	0.409	
1996	12 222	0.298	_	_	_	_	3 502	0.189	
1997	6 100	0.218				_	5 130	0.268	
1998	_	_	_	_	_	_	_	_	
1999	14 958	0.299	_	_	_	_	11 350	0.611	
2000	_	_	_	_	_	_	_	_	
2001	_	_	_	_	2 033	0.292	_	_	
2002	13 475	0.165	_	_	_	_	_	_	
2003	14 428	0.312		_	4 291	0.586	8 690	0.745	
2004	7 637	0.182	_	_	497	0.360	716	0.346	
2005	5 714	0.165	_	_		_	7 472	0.886	
2006	8 287	0.299	_	_	1 761	0.447	1 297	0.249	
2007	5 783	0.258	_	_	939	0.273	3 297	0.475	
2008	5 027	0.137		_	4 896	0.204	3 066	0.220	
2009	11 325	0.185	_	_			6 072	0.302	
2010	13 700	0.137	_	_			7 347	0.349	
2011	16 067	0.165	_	_		_	4 879	0.392	
2012	7 463	0.169	_	_	_	_	_	1	
2013	7 751	0.275	_			_			
2014	8 848	0.154	_	_		_	1 842	0.609	
2015	11 705	0.333	_	_		_	1 353	0.266	
2016	7 929	0.194			499	0.230	9 256	0.635	
2017	5 124	0.284	_	_	_	_	_	_	
2018	_		_	_	_	_	_	_	
2019	16 332	0.340	_	_]			4 179	0.239	
2020	10 147	0.253	_	_		_			
2021		_	_	_		_	6 220	0.413	
2022									

Table 3. Standardised commercial CPUE indices of relative abundance for kingklip for the trawl and longline fishery for the South and West coasts of South Africa. These data have been obtained from Punt and Japp (1994).

Year	West	coast	South coast		
rear	Trawl	Longline	Trawl	Longline	
1983	1.786		1.294		
1984	2.147	2.253	1.230	2.276	
1985	2.193	1.302	1.250	3.082	
1986	1.829	1.394	1.190	3.113	
1987	1.530	1.300	0.906	2.397	
1988	1.420	1.294	0.826	2.202	
1989	0.897	1.234	0.763	1.551	
1990	0.720	1.000	0.520	1.000	
1991	1.000		1.000		

Table 4. Biological parameters values for kingklip for the West and South coasts of South Africa. Note that for simplicity, maturity is assumed to be knife-edge in age. These values are as used by Punt and Japp (1994).

Parameter	West coast	South coast	Coasts combined	
Natural mortality M (yr ⁻¹)	0.2	0.2	0.2	
von Bertalanffy growth				
L_{∞} (cm)	129.2	136.0	132.6	
κ (yr ⁻¹)	0.141	0.142	0.142	
t_0 (yr)	-0.32	0.22	0.05	
Weight (in gm) length relationship				
<i>e</i> (g.cm ⁻¹)	0.00083	0.00162	0.00132	
f	3.41	3.26	3.31	
Age of "plus group" (yr)	30	30	30	
Age at maturity (yr)	5	5	5	
Steepness parameter (h)	0.5	0.5	0.5	