Results for a "Replacement Yield" Model Fit to Catch and Survey Data for the South and West Coasts Kingklip Resource of South Africa

A. Brandão and D.S. Butterworth
MARAM (Marine Resource Assessment and Management Group)
Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, South Africa

October 2016

Abstract

Given the addition of updated and further data, the previous approach used to compute replacement yields (RY) for kingklip no longer provides satisfactory estimates of survey catchability q. Over a range of q values on the South coast from 0.1 to 0.7 , the estimated RY increases from 760 to 1814 tons, compared to the previous estimate of 1614 tons. Correspondingly for the West coast, the RY decreases from 4253 to 2435 tons, compared to the previous estimate of 4102 tons. Suggestions are made of how the DWG might take this matter forward to develop catch limit recommendations based on the RY approach.

Introduction

This paper discusses difficulties encountered in updating the simple "Replacement Yield" (RY) approach to modelling the dynamics of the South African kingklip resource of Brandão and Butterworth (2013), given further data now available. In this paper, the South and the West coast components of the kingklip resource are modelled separately.

Data

Inputs to the "Replacement Yield" (RY) model include the annual total catches for the trawl and the longline fisheries, and survey abundance indices. Annual catches and abundance indices from 1986 (the year from which survey indices are available) are used and these are listed in Table 1 for the South coast and Table 2 for the West coast. No differentiation is made between the different gear types (old or new) and between vessels used to conduct the surveys. Both the catch data and the survey abundance indices have recently been recalculated, so that the historical data differ from those listed in Brandão and Butterworth (2013).

Model

Detailed specification of the RY model used is given in the Appendix. In the previous RY assessment (Brandão and Butterworth, 2013) a Bayesian estimation procedure was implemented for the Ry model. This requires the specification of prior distributions for all estimable parameters. Non-informative priors were assumed for all these parameters for the South coast component. A lognormal prior was assumed for the q_{i} parameters for the West coast, while non-informative priors were assumed for the other parameters. For the South coast the bounds of the uniform prior distribution were given by the 95% confidence limits of the MLE (maximum likelihood estimate) obtained from the Hessian matrix. For the West coast, the Bayesian
mean and standard deviation for the South coast spring $\ln \left(q_{i}\right)$ were used to provide the parameter values for the normal distribution prior for the West coast $\ln (q i) s$.

Unfortunately, however, the further/updated data now available for the South Coast no longer lead to an MLE for q for the autumn survey within $[0,1]$. This precludes application of the approach used in 2013, including the use of a "posterior" for q on the South Coast as a "prior" for q on the West coast. The further/updated data for the West coast do now provide an MLE for q for the summer survey, but the value seems unrealistically low. Hence the Replacement Yield models presented in this paper for both the South and the West coasts are based here on MLE (only) for different fixed values of q for both coasts, i.e. the penalties associated with a "prior" for q for the West coast are no longer added to the negative of the loglikelihood function.

Results and Discussion

Over a range of q values for the autumn survey on the South coast from 0.1 to 0.7 , the estimated RY increases from 760 to 1814 tons, compared to the previous estimate of 1614 tons (Table 3). Correspondingly for the West coast and the summer survey, the RY decreases from 4253 to 2435 tons, compared to the previous estimate of 4102 tons (Table 4).

The "difficulty" with the estimation on the South coast arises from the low survey results now available for the most recent two years. There is however a problem in interpreting these - are they indicative of decreased abundance, or instead a reflection of a period of low catchability (i.e. the same problem as has arisen in interpretation of sole and horse mackerel results)? For both coasts, there is the further difficulty that catchability for the industry vessel used for recent surveys may be less than that for the Africana used previously (e.g. for hake the Andromeda catchability has been estimated as 0.75 compared to that of the Africana, Rademeyer and Butterworth (2015)).

The way forward will need discussion in the DWG. From the analysis side, all that might be possible in the time available might be to repeat the computations of this paper making the "hake adjustment" for the Andromeda catchability. Even so, final advice will likely depend on a discussion in the DWG of plausible values for kingklip catchability.

Acknowledgments

Tracey McGahey and Sobahle Somhlaba are acknowledged for kindly providing the catch and biomass survey data.

References

Brandão A and Butterworth DS. 2013. A "Replacement Yield" model fit to catch and survey data for the South and West coasts kingklip resource of South Africa. FISHERIES/2013/SEP/SWG-DEM/51(rev).

Rademeyer, R.A. and Butterworth, D.S. 2015. Estimating the Andromeda catchability compared to the Africana for South African hake in an update of the Reference Case assessment. DAFF Branch Fisheries document: FISHERIES/2015/AUG/SWG-DEM/16.

Table 1. Annual catches (in tons) and abundance indices for the South African kingklip (in tons) of the South coast together with CVs obtained from surveys (separated by season) for the period 1986 to 2015. Values in bold denote biomass estimates obtained using the new rather than the old gear on Africana, while italicised values denote biomass estimates obtained from surveys carried out on the Andromeda.

Year	South coast					
	Trawl catches	Longline catches	$\begin{aligned} & \text { Sep/Oct (spring) } \\ & (0-200 \mathrm{~m}) \end{aligned}$		$\begin{aligned} & \text { May/Jun (autumn) } \\ & (0-500 \mathrm{~m}) \end{aligned}$	
			Biomass	CV	Biomass	CV
1986	399	7453	2780	0.239		
1987	392	4504	3416	0.182		
1988	408	3311			6478	0.455
1989	223	2209				
1990	266	708	1104	0.352		
1991	680	0	2148	0.273	7499	0.146
1992	676	0	1692	0.218	3064	0.399
1993	884	0	1135	0.201	8759	0.393
1994	1560	107	1333	0.276	34989	0.664
1995	1275	99	1152	0.427	20623	0.409
1996	1981	164			3502	0.189
1997	2128	332			5103	0.268
1998	1366	279				
1999	1737	507			11350	0.611
2000	1465	354				0.257
2001	2210	272	2033	0.292		
2002	2479	581				
2003	2558	702	4291	0.586	8690	0.745
2004	2539	627	497	0.360	716	0.346
2005	1851	634			7472	0.886
2006	1322	86	1774	0.444	1297	0.249
2007	1223	79	958	0.272	3297	0.475
2008	1307	71	4896	0.204	3066	0.220
2009	958	100			6072	0.302
2010	1057	174			7347	0.349
2011	891	92			4879	0.392
2012	1272	73				
2013	1995	54				
2014	1584	9			1842	0.609
2015	1441	3			1353	0.266

Table 2. Annual catches (in tons) and abundance indices for the South African kingklip (in tons) of the West coast together with CVs obtained from surveys (separated by season) for the period 1986 to 2015. Values in bold denote biomass estimates obtained using the new rather than the old gear on Africana, while italicised values denote biomass estimates obtained from surveys carried out on the Andromeda..

Year	West coast					
	Trawl catches	Longline catches	Jan/Feb (summer)		Jul/Aug (winter)	
			Biomass	CV	Biomass	CV
1986	2287	1231	3708	0.160	2462	0.151
1987	2083	1948	2829	0.192	5251	0.243
1988	1519	2091	5538	0.209	1690	0.243
1989	1407	1607			1082	0.337
1990	1002	557	4041	0.263	1311	0.451
1991	1271	0	3490	0.299		
1992	1884	0	7576	0.187		
1993	2207	0	10182	0.186		
1994	1445	260	8175	0.179		
1995	1863	206	7314	0.257		
1996	1596	537	11856	0.299		
1997	1972	501	6001	0.218		
1998	1632	162				
1999	2104	389	14724	0.302		
2000	2166	210				
2001	2651	157				
2002	2280	382	13236	0.165		
2003	1870	286	14080	0.314		
2004	1823	246	7472	0.181		
2005	1790	224	5616	0.165		
2006	1476	75	8083	0.296		
2007	1213	40	5662	0.258		
2008	1122	61	4843	0.138		
2009	1153	81	10922	0.186		
2010	1405	72	13474	0.137		
2011	1540	242	15780	0.165		
2012	1866	289	7576	0.168		
2013	1801	287	7629	0.275		
2014	1525	310	8728	0.153		
2015	1610	330	11473	0.334		

Table 3. Maximum likelihood estimated model parameters for the South coast kingklip component of the resource. The q values that are fixed are given in bold. The log-likelihood values that are not comparable (because the data fitted previously differ from the current new data) are shown in square brackets. The biomasses and replacement yields are in units of tons.

Parameter estimates	-In L: Total	-In L: Survey (spring)	-In L: Survey (autumn)	B_{1986}	$R Y$	$q_{\text {survey }}^{\text {spring }}$
$\begin{gathered} q_{\text {survey }}^{\text {autumn }}=0.354 \\ \text { (Previous) } \end{gathered}$	[26.28]	[16.46]	[9.82]	29344	1614	0.100
$q_{\text {survey }}^{\text {autum }}=0.1$	53.30	22.76	30.54	68772	760	0.040
$q_{\text {survey }}^{\text {autum }}=0.3$	56.20	23.53	32.67	28265	1593	0.117
$q_{\text {survey }}^{\text {autum }}=0.5$	61.44	25.45	35.99	20516	1751	0.186
$q_{\text {survey }}^{\text {autum }}=0.7$	68.34	28.06	40.28	17371	1814	0.247

Table 4. Maximum likelihood estimated model parameters for the West coast kingklip component of the resource. The q values that are fixed are given in bold. The log-likelihood values that are not comparable (because the data fitted previously differ from the current new data) are shown in square brackets. The biomasses and replacement yields are in units of tons.

Parameter estimates	-In L: Total	-In L: Survey (summer)	-In L: Survey (winter)	B_{1986}	$R Y$	$q_{\text {survey }}^{\text {winter }}$
$\begin{gathered} q_{\text {survey }}^{\text {summer }}=0.113 \\ \text { (Previous) } \end{gathered}$	[21.05]	[14.24]	[6.81]	43896	4102	0.058
$q_{\text {survey }}^{\text {summer }}=0.075$ (MLE)	14.97	10.74	4.23	63235	4939	0.036
$q_{\text {survey }}^{\text {summer }}=0.1$	14.99	11.03	3.96	48257	4253	0.048
$q_{\text {survey }}^{\text {summer }}=0.3$	16.24	14.16	2.08	18099	2854	0.137
$q_{\text {survey }}^{\text {summer }}=0.5$	19.31	18.59	0.72	12293	2565	0.213
$q_{\text {survey }}^{\text {summer }}=0.7$	23.96	24.10	-0.15	9948	2435	0.278

Spring survey

Autumn survey

$$
\text { - Obs } \quad \mathrm{q}=0.1 \quad \ldots \ldots \cdot \mathrm{q}=0.3 \quad \text { Year }-q=0.5 \quad-\quad q=0.7
$$

Figure 1. Observed (dots for the old gear and triangles for the new gear) and model estimated (curves) trends for biomass from of Africana survey abundance indices fitted to data for the period 1986 to 2015 for the kingklip off the South coast of South Africa under different fixed q values (shown in the legend) for the summer survey.

Summer survey

Winter survey

Figure 2. Observed (dots for the old gear and triangles for the new gear) and model estimated (curves) trends for biomass from Africana survey abundance indices fitted to data for the period 1986 to 2015 for the kingklip off the West coast of South Africa under different fixed q values (shown in the legend) for the summer survey, as well as for the estimated MLE value.

APPENDIX

REPLACEMENT YIELD MODEL FOR KINGKLIP

The population dynamics

The kingklip resource dynamics are modelled by the following equation:

$$
\begin{equation*}
B_{y+1}=B_{y}+R Y-C_{y} \tag{A.1}
\end{equation*}
$$

where:
$B_{y} \quad$ is the biomass at the start of year y,
C_{y} is the catch in year y, and
$R Y \quad$ is the replacement yield in year y, which is assumed to be constant over the period considered.

The LIKELIHOOD FUNCTION

The model is fitted to survey abundance indices. Contributions by each of these to the negative of the loglikelihood $(-\ln L)$ are as follows.

Survey abundance data

The likelihood is calculated assuming that the observed abundance indices are log-normally distributed about their expected value:

$$
\begin{equation*}
I_{y}^{i}=\hat{I}_{y}^{i} e^{\varepsilon_{y}^{i}} \quad \text { or } \quad \varepsilon_{y}^{i}=\ln \left(I_{y}^{i}\right)-\ln \left(\hat{I}_{y}^{i}\right) \tag{A.2}
\end{equation*}
$$

where:
$I_{y}^{i} \quad$ is the abundance index for year y and survey series i,
$\hat{I}_{y}^{i}=\hat{q}_{i} \hat{B}_{y}$ is the corresponding model estimated value,
$\hat{q}_{i} \quad$ is a constant of proportionality (catchability) for abundance index i, and
$\varepsilon_{y}^{i} \quad$ is the observation error for survey i in year y, which is assumed to be normally distributed:

$$
N\left(0,\left(\sigma_{y}^{i}\right)^{2}\right)
$$

For the surveys, an estimate of the CV is available for each survey and the associated σ_{y}^{i} are given by $\ln \left(1+\left(C V_{y}^{i}\right)^{2}\right)$, where the $C V_{y}^{i}$ are the coefficients of variation of the resource abundance estimate for index ifor year y. These CVs are input and are given in Table 1.

The contribution of the survey abundance data to the negative of the log-likelihood function (after removal of constants) is then given by:

$$
\begin{equation*}
-\ln L_{\text {survey }}=\sum_{i} \sum_{y}\left[\ln \sigma_{y}^{i}+\left(\varepsilon_{y}^{i}\right)^{2} / 2\left(\sigma_{y}^{i}\right)^{2}\right] \tag{A.3}
\end{equation*}
$$

The catchability coefficient q_{i} for the survey abundance index i is estimated by its maximum likelihood value and is given by:

$$
\begin{equation*}
\ln \hat{q}_{i}=\frac{\sum_{y}\left\{\ln l_{y}^{i}-\ln \hat{B}_{y}\right\}\left(1 /\left(\sigma_{y}^{i}\right)^{2}\right)}{\sum_{y} 1 /\left(\sigma_{y}^{i}\right)^{2}} \tag{A.4}
\end{equation*}
$$

