METHODS TESTING: THE DESIGN OF SIMULATION EXERCISES

Doug Butterworth

MARAM (Marine Resource Assessment and Management Group)
Department of Mathematics and Applied Mathematics
University of Cape Town, Rondebosch 7701, South Africa

ICES WORKING GROUP ON METHODS OF FISH STOCK ASSESSMENTS

LISBON OCTOBER 2012

TOR

- a) Assemble 10–12 datasets from ICES that characterize the breadth of life-history strategy, data quality, population dynamics, and assessment problems.
- b) Prepare a publication (to be presented to the SISAM symposium), using these datasets, that explores providing guidelines on simulation testing of assessment models.

TOR a) STOCKS SELECTED

North Sea cod

North Sea plaice

North Sea herring

North Sea haddock

Northern hake

Spurdog

Biscay anchovy

Iberian sardine

Southern horse mackerel

N Atlantic albacore tuna

US W coast canary rockfish

G Bank yellowtail flounder

South African anchovy

TOR b) SIMULATION

Discussion centred on the development of an assessment comparison and simulation testing framework

- I. Different models, fixed settings
- II. Diagnostics and optimised settings
- III. Simulations: observation error only (a) self test (b) cross test
- IV. Simulations: observation + process error
- V. Simulations: Grand questions

 May need to force more contrast in data

MODEL FITS TO REAL DATA SETS

For key assessment outputs – how dependent on method (model) chosen?

Try many models

Simple to complex continuum

- I. Different models, fixed settings
- II. Diagnostics and optimised settings

 AIC, cross-validation, etc.

EXTENSION TO SIMULATION

Difficulty with approaches used previously Generic – so does result apply to MY stock?

Thus investigate for actual stocks

Base on Management Procedure (MSE) testing protocol developed in IWC

Key consideration – robustness to uncertainty

Consider alternative plausible scenarios (assessments) which MUST be consistent with available data

Apply the "CONDITIONING" concept

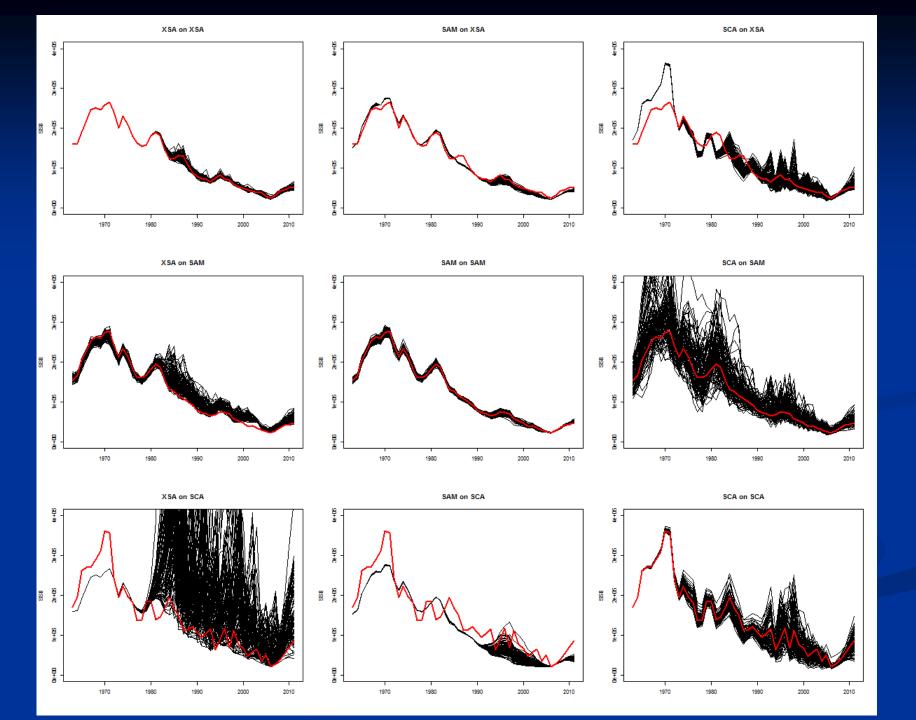
CONDITIONING SIMULATIONS

Each pseudo dataset is generated from what could be the real underlying dynamics for the stock concerned (as provided by a plausible assessment model), with errors added consistent with the error distributions as estimated in that assessment

TWO TEST TYPES: SELF/CROSS

PERFORMANCE COMPARISON PLOT

Rows: "Truth" as provided by a model


Columns: Estimates from the model applied

to pseudo-data

Cell contents: Performance statistic, here SSB

[Most pertinent would be the catch

under the intended harvest strategy]

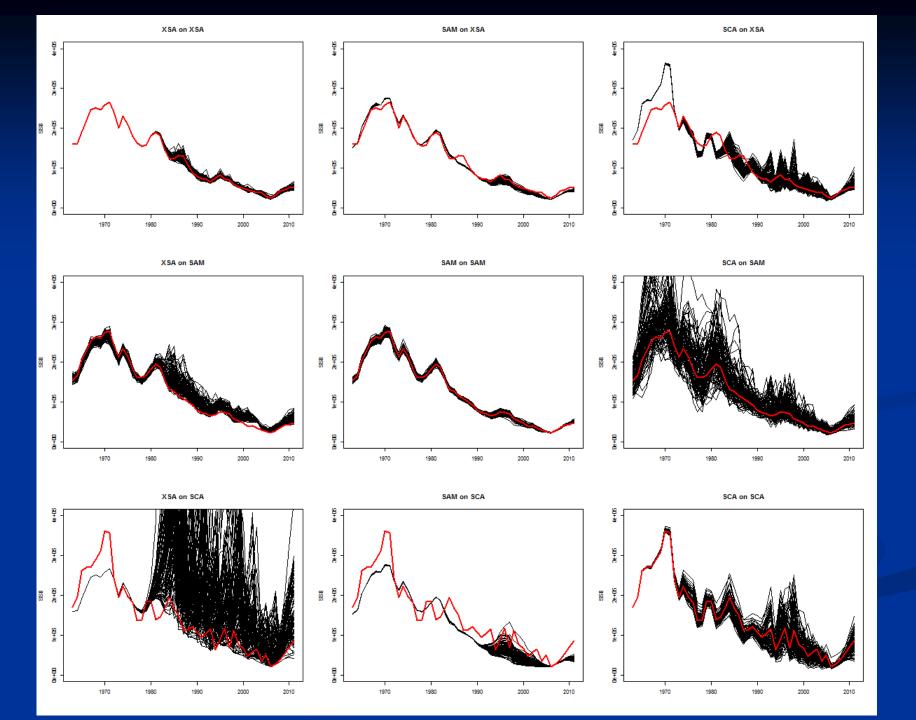
TWO TEST TYPES: SELF/CROSS

PERFORMANCE COMPARISON PLOT

Rows: "Truth" as provided by a model

Columns: Estimates from the model applied

to pseudo-data


Cell contents: Performance statistic, here SSB

SELF TEST: Diagonals

How well does the model estimate itself

CROSS TEST: Off-diagonals

How well does it estimate other models

III. Simulations: Observation Error only
Simulated randomness only in data generated
Underlying dynamics unchanged over
simulations

"EASY" to implement

BUT Catch ... - observation or process error?

IV. Simulations: Observation + Process Error

Simulated randomness now also in processes such as recruitment

Underlying dynamics changes over simulations

"DIFFICULT" to implement

Can't simply generate alternative recruitment residuals, as actual catches couldn't be taken in some cases

Generate residuals from parameter variance-covariance matrix to accommodate correlations implied

WHICH WAY TO SIMULATE?

Difficulty with approaches used previously Generic – so does result apply to MY stock?

Case-specific conditioning – results apply to MY stock – but can anything be said about other stocks, or any generic inference drawn?

Approach?

Repeat for many stocks to see whether patterns emerge which might justifiably be considered reliable general inferences

- I. Different models, fixed settings
- II. Diagnostics and optimised settings
- III. Simulations: observation error only (a) self test (b) cross test
- IV. Simulations: observation + process error
- V. Simulations: Grand questions

 May need to force more contrast in data

GRAND QUESTIONS

Examples:

- How important is it to have good and frequent age data?
- Does VPA's assumption of catch-at-age being exact matter?

What is the best approach to simulation testing to address this?

Is conditioning on real datasets appropriate – more contrast needed for effective discrimination?

Application of POPSIM – Jon Deroba

Thank you for your attention

With acknowledgements to other participants in the ICES Methods Working Group who assisted in developing this framework